

Weather, Climate, Variability & Change

- Weather: Changes within a short period
- Climate: Ave. weather over a period
 & large area
- Climate variability: Reversable deviation from the normal
- Climate change: Irreversible changes over a period

June 2020 416.60 ppm
June 2021 418.94 ppm
June 2022 420.99 ppm
June 2023 423.68 ppm

Global CO₂ level at Mauna Loa

Mauna Loa, the world's largest volcano,

Located **on the south-central island of Hawaii, U.S.**,

Source: Scripps Institution of Oceanography, NOAA Earth System Research Laboratory, esrl.noaa.gov

Impact of Climate Change

Global Temperature

- 1850 1975 (125 years) → 0.25°C
- 1975 2000 (25 years) → 0.75°C
- 2000 2020 (20 years) → 1.00°C
- Approximately 0.5°C per decade

Sea Level rise

- 1995 2010 \rightarrow 50 mm (3.3mm/yr)
- 2010 2015 \rightarrow 75 mm (5.0 mm/yr)
- $2015 2020 \rightarrow 100 \text{ mm } (5.0 \text{ mm/yr})$
- $1995 2020 \rightarrow 100 \text{ mm } (4.0 \text{ mm/yr})$

Temperature Effects on Crop Yield

Crop	Topt, °C	T _{max} °C	Yield at T _{opt} t/ha	Yield at 28°C, t/ha	Yield at 32°C t/ha	% decrease (28 to 32°C)
Rice	25	36	7.55	6.31	2.93	54
Soybean	28	39	3.41	3.41	3.06	10
Dry bean	22	32	2.87	1.39	0.00	100
Peanut	25	40	3.38	3.22	2.58	20
Sorghum	26	35	12.24	11.75	6.95	41

Global emissions by sector

Percent share of 2020 net GHG emissions

Source: Rhodium Group

GHG emission from different sectors (MT CO₂)

CO₂ concentration

Highest in at least 2 million years

Sea level rise

Fastest rates in at least 3000 years

Arctic sea ice area

in at least 1000 years

Lowest level

Glaciers retreat

in at least

2000 years

IPCCs VI Assessment Report

SIXTH ASSESSMENT REPORT Working Group I – The Physical Science Basis

With every additional amount of global warming, changes get larger.

Simulated changes...

Percentage change in crop yield between present and 2050

15 – 25 % yield reduction in India

Source: IPCC VI AR 2022

Global Hunger

India 15 - 25% increase hungry population

Extreme events

Drought: Prolonged periods of low precipitation can lead to drought conditions, causing **soil moisture deficits** and **water shortages** for irrigation.

Floods: Excessive rainfall and flooding can saturate fields, erode soil, and damage crops

and detrimental.

- Lead to the spread of diseases and pests
- Post-flood soil contamination can impact the quality and safety of produce.

Heat wave & Cold wave

- High temperatures causes heat stress in plants
- Causing reduced photosynthesis
- Wilting, and decreased fruit set.
- Frost and freeze events can damage sensitive crops
- Lead to significant yield losses, especially during critical growth stages.

Hailstorms

- Physically damage crops, leading to yield losses
- Reduced marketable quality.
- These events are highly detrimental during flowering and fruiting stages.

Innovative Climate Resilient Technologies

TNAU's District Level Seasonal Rainfall Forecast

- TNAU provides district level SRF, since 2014
- Twice during May (SWM) & Sep. (NEM)
- Disseminating thro' Email & Mass media

TNAU's Village Level Medium Range Forecast

- Block level (2011-21) to Village level (2022 onwards)
- 3 km resolution for next 6 days
- Linked with 18555 revenue villages (>75% accuracy)

TNAU – AAS : web cum Mobile App "Automation in Agromet Advisory Services"

TNAU'S Weather Whatsapp Group

number

https://aas.ktrack.in

- Tailored crop production and protection advisories directly to farmers
- 108 crops, 6 stages, 54 weather perils

Android mobile App

Weather based, farm, crop and stage specific advisories

- Agromet advisories to mobile as SMS/ WhatsApp
- 9.25 lakh farmers receiving SMS thro' mKisan
- Block-wise WhatsApp group (385 Nos.)
- Sharing forecast, advisories & extremes weather
- Now advisories are shared as Audio & Video files

Risk Assessment & Management

Tamil Nadu Agricultural Weather Network

- Real time weather uploaded in http:// tawn.tnau.ac.in
- Data is useful for forecast & advisory preparation
- 257 AWS handed over to Revenue Department

Advanced climate change studies

115 years old Principal Meteorological Observatory

- River basin wise climate change studies and management
- Crop Yield forecast to major crops, twice during kharif & Rabi
- Pioneer in GHG emission studies

Climate smart crops and genotypes tolerant to abiotic stress

Crop	Varieties	Type of stress	
Rice	PMK1, PMK2, PMK3, Anna 4, MDU5	Drought and High temperature	
	CO 43, TRY1,2,3	Salinity	
	CR1009 Sub 1	Flood and submergence and tolerance	
	MDU3	Low temperature	
Green gram	CO 6, Paiyur 1	Drought	
	ADT 3	Salt stress and Flooding	
Black gram	VBN 6	Drought	
	ADT 3	Flooding	
Groundnut	TMVGn 13, ALR 3, TMV 8	Drought	
Sesame	CO 1 & VRI5	Drought	
Sunflower	COSFV 5, CO 4	Drought and Salinity	
Coconut	ALR (CN) 1	Drought	
Horse gram	Paiyur1 and Paiyur 2	Cold or frost tolerant	

Crop Management Technologies for Sustainable Production under Changing Climate

Direct Seeded Rice (DSR)

Wet direct seeded rice

- Reduced input cost Nursery and transplanting cost; Less labour
- Using paddy drum seeder row to row spacing is maintained
- Optimum plant stand; Less seed rate (25 kg/ha)
- Higher grain yield (5.5 t/ha)
- All season except heavy downpour monsoon period
- Area: 50,000 ha in Tamil Nadu

- Water Saving : 15%
 - **Labour Saving : 20%**

Dry direct seeded rice – (Semi dry rice)

- Ramanathapuram & Sivaganga districts (Tank irrigated)
- Nagapattinam & Tiruvarur districts (Canal irrigated)
- Around 3.00 lakh ha & Yield 4.5 t/ha
- Sowing by using tractor attached seed drill @ 40 kg/ha
- Row to row spacing is maintained; Optimum plant stand
- PE Pretilachlor @ 0.45 kg /ha on 5 DAS + two machine weeding (power weeder) on 30 and 45 DAS + AWD + STCR based NPK

Water Saving : 25% Labour Saving : 20%

Low GHG emission

System Intensification of Crops for Efficient Use of Natural Resources

Rice (SRI)

Sugarcane (SSI)

Particulars	Conventional	SSI	
Seed/Setts/acre	4 tonnes / acre	0.5 tonnes / acre	
Nursery	No	Yes	
Spacing (Row)	2.0 -3.0 ft.	5.0 ft.	
Planting	setts (30,000)	25 days old seedlings (5000)	
Water	Flood irrigation	Drip fertigation	
Mortality rate	High	Low	
No.of tillers/plant	6 - 8	15 - 20	
Intercrop	NIL	Possible	
Yield (t / ha)	98 t/ha	175 t/ha	
Net income	Rs. 92,440 /ha	Rs. 2,64,773 /ha	

Resilient Technologies for Climate Variability

Grain cum Fodder Maize

- ✓ Dual purpose (Grain + Fodder) at 30x25 cm
- ✓ Reduced risk of crop failure due to terminal drought
- ✓ Grain (6.64t/ha) at 110 days & Fodder (16.6 t/ha) at 50 DAS, Net returns of Rs.76510/ha.

Redgram Transplanting

- ✓ Suitable for delayed monsoon onset
- ✓ Transplanting 25 days old seedlings raised in polybags
- ✓ Yield enhancement : 28 %

HDPS in Cotton

- √ 100 cm X 10 cm (1,00,000 plants /ha)
- ✓ Effective use of natural resources
- ✓ Synchronized harvest and mechanization
- ✓ Additional yield of 400 600 kg/ha

Technologies for water conservation

Smart Water Saving Technology (AWDI) in Rice

- ✓ AWDI of 10 cm depletion in light soils and 15 cm depletion in heavy soils
- ✓ Water saving 20-25 % and reduced GHG emission
- ✓ Yield increment 20%

Suitable land configuration for rainfed Sorghum in rainfed Vertisols

- > Tied Ridge method (45 x 15 cm spacing)
- Special features
 - > Uniform crop growth
 - > Reduced Run off & Increased Infiltration
- Advantages
 - ✓ Higher grain (1673 kg/ha) and fodder yield (4107 kg/ha)
 - ✓ In-situ moisture conservation
 - Reduced soil erosion

Climate resilient crops and cropping systems

Castor as a sole crop: A money spinner for resource poor farmers

- Fertilizer responsive crop under drip system
- Suitable for all seasons and soil type
- Rainfed ecosystem : 2500 kg/ha
- Irrigated condition: 4000 kg/ha
- Good foreign exchange
- ❖ Area: 16,250 ha

Best Sowing Time for Enhancing the Productivity of Rainfed Winter Pulses

Bengalgram:

- Sowing time and Method: Sowing with seed drill during first week of November.
- Productivity: 12.5% increase in yield (800 kg/ha) compared to sowing during second week of November (691 kg/ha) and 14 % increase in yield compared to broadcasting (688 kg/ha).
- Economics: Net return: 18365/ ha with B:C ratio 2.04.

Horsegram:

- Sowing time and Method: Line or seed drill sowing during last week of October.
- Productivity: 13% increase in yield (779 kg/ha) over November first week sowing (693 kg/ha) and 14% increase in yield than broadcasting.
- Economics: Line sowing: Net return: Rs 11568/ha; BCR:1.74. or Seed drill sowing: Yield: 788 kg/ha;

Net return: Rs 11540/ha; BCR: 1.72).

TNAU Crop Boosters Developed for Increasing the Yield of Major Crops

Coconut Tonic Yield 25% **BCR: 3.3**

Groundnut Rich Yield 17% BCR: 3.25

Pulse Wonder

Yield 1 22%

BCR: 2.8

TNAU பருத்தி பிளஸ்

ருத்திக்குத் தேவையான ஊட்டச்சத்துக்க

மற்றும் வளர்ச்சி ஊக்கிகள் கலந்த புஸ்டர்

பயிர் வினையியல் துறை

Camunitudavii - 641 003 (*) 0422 - 6611243

Cotton Plus

Yield 18%

BCR: 2.4

Maize Maxim Yield 20% BCR: 2.8

Castor Gold

Yield 27%

Cane Booster Cassava Booster Horsegram Wonder **Yield** 14% **Yield 124% Yield 126% BCR: 2.3 BCR: 3.5 BCR: 3.1**

Rice Bloom **Yield 15% BCR**: 2.1

TNAU Crop Shine (Abiotic stress mitigation)

Advantages

- Nullifies the ill effects of abiotic stresses
- Increases fertility coefficient and grain/seed filling percentage
- Minimizes the yield reduction under abiotic stresses
- Increases the yield of crops ranging from 10 to 35%
- Increases benefit cost ratio ranging from 1.70 to 2.25 among the crops

Climate Resilient Integrated Farming Systems

Garden Land Ecosystem

Climate Resilient Integrated Farming Systems

SI. No	Particulars	Garden Land Ecosystem	Wetland Ecosystem
1.	Components (1 ha)	Crops (0.60 ha) + Horticulture (0.10 ha) + Dairy: 2 cow with calves (50 m²) + Goat: Salem black - 10 F + 1 M (50 m²) + Poultry: Aseel-150 Nos./year (50 m²) + Fodder crops (25 m²) + Supplementary - Vermicompost, border planting, kitchen garden (35 m²)	Crops and fodder (0.61 ha) + Horticulture (0.10 ha) + Fishery (0.08 ha) : Composite culture + Dairy: Milch cow with calves (20 m²) + Poultry: Aseel - 150 Nos. / year (10 m²) + Supplementary: Vermicompost (20 m²), border planting (50 m²)
2.	Regeneration	Nutrient recycled: 197:75:123 kg NPK /ha	Nutrient recycled: 256:29:226 kg NPK / ha
3.	Income	3.00 Lakhs	2.75 Lakhs
4.	Employment	501 man days / year	403 man days / year
5.	Nutritional security for farm families	100%	100%
6.	Water Use Efficiency	2.46 kg m ⁻³	2.14 kg m ⁻³
7.	Energy productivity	1.44 MJ ha ⁻¹	0.49 MJ ha ⁻¹

