PROFORMA FOR ANNUAL REPORT 2010-11

(FOR THE PERIOD APRIL 2010 TO MARCH 2011)

KRISHI VIGYAN KENDRA (VIRUDHUNAGAR)

GENERAL INFORMATION ABOUT THE KVK

1.1. Name and address of KVK with phone, fax and e-mail

KVK Address	Telephone		E mail	Web Address
Krishi Vigyan Kendra, Kovilangulam Aruppukottai -626107 Virudhunagar District, TN	Office 04566-220561	FAX 04566220561	kvkvirudhunagar@tnau.ac.in	www.tnau.ac.in

1.2 .Name and address of host organization with phone, fax and e-mail

Address	Telephone		E mail	Web Address
	Office Fax			
Tamil Nadu Agricultural				
University, Coimbatore-641				
003				
		0422-6611433 d	ee@tnau.ac.in	www.tnau.ac.in

1.3. Name of the Programme Coordinator with phone & mobile No						
Name		Telepho	ne / Contact			
Res	idence	Mobile	Email			
Dr.S.Murali Krishnasamy	09244244034	9994399200	muralikrishnasamy @ yahoo.com muralikrishnasamy @ gmail.com			

	1.4. Year of s	sanction: 2006									
	1.5. Staff Po	sition (as 31 st March 2	011)								
SI .	Sanctioned	Name of the	Decision	-	Discipling	Highest Qualification		Basic	Date of joining	Permanent	Category (SC/ST/
No.	post	incumbent	Designation M/	F	Discipline	(for PC, SMS and Prog. Asstt.)	Scale	pay	KVK	/Temporary	`OBC/ Others)
1 Pro	gramme	Dr.S.Murali	Professor M		Agronomy	Ph.D.	37400-	59010 3	0.06.07	Permanent	OC
	Coordinator	Krishnasamy					67333- GP- 10000				
2 SM	S	Mr.M.Rajendran	Asst. Professor	М	Agricultural	M.Sc.(Ag.) 37	400-	56460 0	7.05.08	Permanent	OBC
					Entomology		67333- GP- 9000				
3 SM	S	Dr.D.Jegadeeswari	Asst. Professor	F	Soil Science	Ph.D. 15	600-	29830 1	7.05.06	Permanent	OBC
					&Ag.Chemistry		39100- GP- 7000				
4 SM	S	Mr.K.Ramakrishnan	Asst. Professor	М	Agricultural	M.Sc.(Ag.) 15	600-	24320 1	9.04.10	Permanent	OBC
					Extension		39100- GP- 6000				
5 SM	S	Dr.R.Jayashree	Asst. Professor	F	Environmental	Ph.D. 15	600-	25600 3	0.12.09	Permanent	OBC
					Science		39100- GP- 6000				
6 SM	S	Dr.S.Rathika	Asst. Professor	F	Agronomy	Ph.D.	15600-	25600 3	0.12.09	Permanent	OBC
							39100- GP- 6000				
7 SM	S	Dr.S.Muthuramu	Asst. Professor	М	Plant Breeding	Ph.D. 15	600-	25600 1	3.01.10	Permanent	SC
					& Genetics		39100- GP-				

8 Pro	gramme Assistant (Lab Tech.)/ T-4	Mrs. M. Kavitha	Programme Assistant	F Ho		B.Sc.(H.Sc.)	9300- 34800- GP- 4400		4. 02.11	Permanent	BC
9 Pro	o gramme Assistant (Computer)/ T-4	Mrs.N.Ramya Co	mputer Programmer	F Co	mputer	BCA	9300- 34800- GP- 4400	15530 (Permanent	SC
10 Pi	Assistant/ Farm Manager	Mr.R.Karthik F	arm Manager	М	Horticulture	M.Sc.(Horti.)	9300- 34800- GP- 4400		7. 09.10	Permanent	OBC
11 A	ccount ant	Mrs.S.Dhanalachumi	Superintendent	F	-	-	9300- 34800- GP- 4800	19480 9		Permanent	SC
12 Jr	Stenographer	Mr.A.Mohamed kasin	Superintendent N	И	-	-	9300- 34800- GP- 4800	18910 2	3. 02.06	Permanent	OBC
13 D	rive r	Mr.S. Jawahar	Mechanic	М	-	-	5200- 20200- GP- 2400	11310 1	0. 05.06	Permanent	OBC
14 D	rive r	Mr.M. Gurumoorthi	Driver	М	-	-	5200- 20200- GP- 2000	9140 23	. 07.07	Permanent	OBC
15 Si	u pporting staff	Mr. N. Sakthivel	Office Assistant	M -		-	5200- 20200- GP- 1800	9660 23	. 02.06	Permanent	OBC
16 Si	u pporting staff	Mrs.V. Krishnaveni	Office Assistant	F-		-	5200- 20200- GP- 1300	7490 23	. 02.06	Permanent	OBC

1.6. Total land with KVK (in ha)

S. No.	Item	Area (ha)
1 Un	der Buildings	0.4
2.	Under Demonstration Units	0.6
3. Und	er Crops	14.6 ha
4. Orchard/	A gro-forestry	0.4
5. Othe	rs	-

:

1.7. Infrastructural Development:

A) Buildings

		Source of			Stag	е		
S.		funding		Complete I	n		compl	ete
No.	Name of building		Completion Date	Plinth area (Sq.m)	Expenditure (Rs.)	Starting Date	Plinth area (Sq.m)	Status of construction
1. Adr	ni nistrative Building	ICAR			55,00,000	4.6.2010	550	Nearing Completion will be over by May 2011
2. F	armers Hostel	ICAR	March 2011	300	30,00,000			Completed
3.	Staff Quarters	Not sanctioned						
1								
2								
3								
4								
5								
6								
4. Der	n onstration Units							
	1.Goat Demo Unit	ICAR	March 2011	80	7,60,000			Completed
2	.Poultry Demo Unit	ICAR	March 2011	80	3,40,000			Completed
	3 Shade net nursery	NMPB	March 2009	50	30,000			Completed
5 Fe	ncing							
6 Rai	n Water harvesting system							
7 T	hreshing floor							
8 F	arm godown							

B) Vehicles

Type of vehicle	Year of purchase	Cost (Rs.)	Total kms. Run	Present status
Јеер	2009	5,58,000	48200	Good and in use
Two wheeler	2009	58,000	10027	Good and in use
Two wheeler	2009	41,805	5037	Good and in use
Tractor	2010	5,00,000	50 hour	Good and in use
Power Tiller	2010	1,33,328	10 hour	Good and in use

C) Equipments & AV aids

Name of the equipment	Year of purchase	Cost (Rs.)	Present status
Computer with accessories	2007	45,462	Working
Digital Camera	2007	16,640	Working
Digital copier Machine	2007	74,996	Working
LCD Projector	2007	53,500	Working
Digital pH Meter	2007	7,946	Working
Digital Conductivity Meter	2007	8,300	Working
Spectrophotometer	2007	89,454	Working
Flame photometer	2007	33,300	Working
Automatic KJEL PLUS Block digestion and Distillation system	2007	1,76,432	Working
ANAMED Electronic balance -6000 g Capacity	2007	28,567	Working
ANAMED Electronic balance -200 g capacity	2007	92,007	Working
Hot plate	2007	1,919	Working
Hot air oven	2007	7,070	Working
Grinder	2007	12,428	Working
Refrigerator 2	007	9,950	Working
Spring type projection screen	2007	2,100	Working
Electrical water bath	2007	3,400	Working
Water still	2007	28,418	Working
Mechanical shaker	2007	22,247	Working
Fax machine	2009	15,000	Working
Chaff cutter (1.5H.P)	2011	12,584	Working
Homestead incubator	2011	15,600	Working
UPS 600 VA, UTL	2011	5,351	Working
Hi-Power 80 M battery	2011	8,820	Working
EPABX system	2011	49,820	Working
Computer and Accessories	2011	74,996	Working
LCD TV Panasonic	2011	20,999	Working
LG 1.5 Ton split AC with stabilizers	2011	88,799	Working
Multimedia Projector Infocus	2011	32,724	Working
Konica laser colour printer	2011	17,280	Working
Laser Land Leveler	2011	3,40,000	Working
Generator 2	011	2,25,000	Installed

1.8. Details SAC meeting conducted in 2010-11

SI.No. D	a te	Number of Participants	No. of absentees	Salient Recommendations	Action taken
			absentees		
1.21.	09.10	55	1	Introduction of TPS 3 Rice,	Included in the Annual Action
			Sericulture		Plan 2011-12
2.				Mass Popularization of PMK-4(Anna)	FLD conducted and to be
				Rice Variety	continued this year also
3.				Popularization of backyard poultry breed	Included in the Annual Action
				Cauvery and Namakkal 1	Plan 2011-12
4.					

PART II - DETAILS OF DISTRICT

2.1 Major farming systems/enterprises (based on the analysis made by the KVK)

S. No	Farming system/enterprise
1	Farming Situations - Rainfed Vertisol
	Rainfed Cotton + Pulses – fallow
	Rainfed sorghum + Cowpea – fallow
	Rainfed Pulses – fallow
	Rainfed sunflower – fallow
	Rainfed maize/Pearl millet – fallow
	Rainfed Coriander +Bengal gram
2	Farming Situations - Rainfed Alfisol
	Rainfed Groundnut + Redgram –fallow
	Rainfed sorghum + Cowpea – fallow
3	Rainfed tank ayacut
	Rice – fallow
4	Gardenlands
	Pulses – Rice/Cotton – Vegetables

2.2 Description of Agro-climatic Zone & major agro ecological situations (based on soil and topography)

S. No	Agro-climatic Zone	Characteristics
1	Southern Agro-climatic Zone	The climate of the region is semi-arid tropic with an aver age annual rainfall of 830 mm. The station is having black soil, the depth ranging from0.6 to 1.2 m. The soil group is vertisol with clay loam and underlying canker nodules.

S. No	Agro ecological situation	Characteristics
1	Agro ecological Zone-I	Rainfed area is 2.62 lakh ha, receiving 425 mm annual rainfall mainly from NEM
		and LGP is 115 days. Specifically Unimodel Rainfall and single crop

2.3 Soil type/s

S. No	Soil type	Characteristics	Area
1	Red loam	Shallow to very deep, well drained with clay enriched B horizon and more of sesquioxide in the surface horizon, red to yellow in colour due to ferric oxides, variable in texture from loamy sand to clay loam, pH of 6.0 TO 7.5, shallow to deep depth, well drained, low in CEC and base saturation, low in organic matter, low in N,P,and high in K.	Rajapalayam Watrap Srivilliputhur Taluks
2	Lateratic Soil	More of sesquioxide in the surface horizon, deeply weathered, high clay content, pH of 6.0 TO 6.8, with depth there is a decreasing intensity of red colour and cly content, defeicient in P due to high P fixing capacity, toxicity of AI and Mn, deficiency of K,Ca,Mg,Zn and B	Tiruchuli Kariappatti Taluks
3	Black Soil	Having high clay content,towards calcareous, pH of 7.8 to 9.4, have high CEC, high moisture holding capacity,black colour due to clay humus complexes,low in organic matter, low in N,P,and high in K	Sattur, Srivilliputhur Aruppukkottai Virudhunagar Taluks
4	Sandy Coastal Alluviam	Recently formed, shows little or no horizonation, light coloured, Coarse in texture mostly sandy loam, pose problems of soil salinity and or sodicity, deficient in N.P and organic matter	Narikkudi Kariappatti Taluks

S. No	Сгор	Total Cropped Area (ha)	Production '1000 tonnes	Productivity (kg/ha)
1 Pa	ddy	32496.65	107.239	3300
2 Cho	lam	11077.35	9.36	845
3 Cum	bu	3129.995	6.013	1921
4 Rag	i	199.75	0.318	1592
5 Korr	а	0	0	0
6 Vara	gu	15.94	0.023	1443
7 Sama	i	0	0	0
8 Ma	ize	16465.84	86.544	5256
9 Oth	er Cereals	990.545	0.512	517
10 Red	gram	398.875	0.28	702
11 Be	ngalgram	167.35	0.04	239
12 Gree	ngram	8026.65	4.519	563
13 Bla	ckgram	4237.885	1.102	260
14 Hors	egram	63.51	0.028	441
15 Oth	er pulses	924.585	0.161	174
16 Grou	ndnut	8795.45	10.405	1183
17 Ging	elly	2527.41	0.9	356
18 Su	nflower	1522.1	1.087	714
19 Co	tton	8705.255	2.324	267
20 Su	garcane	3902.195	386.317	99000
21 To	pioca	38.435	1.622	42201
22 Ind	igo	0	0	0
23 Ba	nana	862.74	41.188	47741
24 Cor	iander	3288.6	2.038	620
25 Chi	llies	3104.105	1.782	574
26 Onio	n	1295.065	6.913	5338
27 Car	damom	278.59	0.024	86

2.4. Area, Production and Productivity of major crops cultivated in the district (2009-10)

* Sugarcane, Banana, productivity in t/ha Source: Department of Economics and Statistics, Virudhunagar

2.5. Weather data

Month R	ainfall (mm)	Temperature ⁰ C		Relative Humidity (%)
		Maximum	Minimum	
April 2010	43	34.6	21.2	65.5
May 2010	48.3	37.4	23.8	58.5
June 2010	0	36.8	24.3	55.5
July 2010	0	37	23.8	52.5
August 2010	90.6	36.6	23.2	56.5
September 2010	70.4	36.7	24.4	64
October 2010	33.2	33.6	23.7	61
November 2010	262.8	30.9	23.3	84.5
December 2010	33.6	29.5	20.4	84.5
January 2011	1.8	30.8	20.7	67.7
February 2011	0	31.8	21	68.7
March 2011	21	35.4	21.3	59.5

*Agricultural Meteorological Observatory, Regional Research Station, Kovilangulam

2.6. Production and productivity of livestock, Poultry, Fisheries etc. in the district

Category	Population (in '000)	Production	Productivity
Cattle	231574		
Crossbred			
Indigenous			
Buffalo	25713		
Sheep 27	2762		
Crossbred			
Indigenous			
Goats	275249		
Pigs	14023		
Crossbred			
Indigenous			
Rabbits			
Poultry 38	6268		
Hens			
Desi			
Improved			
Ducks			
Turkey and others			

Source: Department of Economics and Statistics, Chennai-6

Category	Area	Production	Productivity
Fish			
Marine			
Inland			
Prawn			
Scampi			
Shrimp			

* Please provide latest data from authorized sources. Please quote the source

2.7 District profile has been prepared and submitted Yes / No: Yes

2.8 Details of Operational area / Villages

SI.No. T	alu k	Name of the block	Name of the village	How long the village is covered under operational area of the KVK (specify the years)	Major crops & enterprises	Major problem identified	ldentified Thrust Areas
1. W	atrap		Watrap Maharajapuram Sundarapandiyam	3 Ri	се	Superfine rice variety BPT 5204 is in vogue due to market preference It is prone to blast disease Alternative to BPT is required	Super fine rice variety with good market preference
2. A	ruppukottai		Muthuramalingapuram Naarthampatti	4	Black gram	Low yields. Flower drop Weed menace Broad cast sowing Poor establishment	Introduction of high yielding varieties ICM Pulse wonder spray
3.	Arupukottai and Kariyapatti		Gopalapuram Muthuramalingapuram Pisindi	4 3	Redgram Redgra	m cultivation is getting reduced in the district. Even if it is cultivated, it is seldom raised as a pure crop.	Integrated Production Technology
4.	Aruppukottai and Rajapalayam		Muthuramalingapuram Rajapalyam	4	Redgram Lo	w productivity due to local varity	Introduction of New Hybrids
5.	Kariapaati		Maraikulam	5		Cultivating old variety – poor yielding Non application of Gypsum Pest and disease problem (Thrips and leaf spot)	Mechanised sowing ICM
6.	Kariappatti and Sathur		D.Kadambankulam Nalli	4 and 1	Chillies	Use of low yielding variety	Variety introduction
7.	Virudhunagar, Aruppukottai		Virudhunagar, Aruppukottai	4	Dairy Lo	w milk yield Fertility problem and esterous synchronisation in animals	Mineral nutrition introduction
8.	Virudhunagar, Aruppukottai		Kuppampatti Ondipuli Naickanur Mudukkankulam Sankaralingapuram	1	Poultry Ra	nikhet disease is disastrous in poultry	Poultry Disease management
9.	Aruppukottai		Muthuramalingapuram and Kallumadam	4 1	Blackgram Lo	w productivity Water scarcity in rainfed cultivation	Mini mobile sprinkler introduction and ICM

10	Srivilliputhur	Srivilliputhur Karisalkulam Mamsapuram	3 2 1	Rice L	ow yielding varieties Non adoption of INM and IPM Low producti vity	Introduction of Co(R)H 3 hybrid under SRI
11	Thiruchuli	Senkulam Paralatchi Melaiyur	4 3 1	Rice Lo	w productivity Drought Use of local variety Poor management practices	Drought tolerant rice Drought management strategy
12	Rajapalayam	Rajapalayam Sethur Muthusamipuram Dalavoipuram	3 2 1	Rice L	abour scarcity	Farm machanisation in rice
13.	Thiruchuli and Virudhunagar blocks	Sengulam Sundaralingapuram	1 1	Cumbu Dr	ought	Drought management practices
14.	Aruppukottai	Chidhambarapuram Ramalingapuram Ramanaickanpatti Vadhuvarpatti Muthuramalingapuram Naarthampatti	2 2 2 2 1	Fodder grass	Low productivity Local variety	Integrated Crop Management practices by cultivating latest released variety with high yield potential
15.	Kariapatti and Virudhunagar	Kariapatti Mudukankualm	4 4	Onion	Use of low yielding variety	Variety introduction
16.	Kariyapatti	Aaviyur Arasagulam Melathulukkangulam	4 4 5	Poultry L	ow productivity Local variety	Popularisation of CARI Aseel
17.	Aruppukottai and Kariapatti	Muthuramalingapuram 4		Kudiraivali	Low productivity Local variety	Variety introduction
18.	Virudhunagar, Aruppukottai	Virudhunagar, Aruppukottai	2 4	Goat L	ow body weight due to nutrient deficicy	Popualrisation of mineral salt lick cake
19.	Rajapalayam and Kariapatti	Rajapalayam Sethur Muthusamipuram Dalavoipuram Mudukankulam	3 2 1 1 4	Mango L	ow productivity Local variety	Introduction of high density planting in Alfanso
20.	Kariappatti and Aruppukkottai	V.Nangoor Vaduvarpatti	3 2	Sesamum	Use of low yielding variety	Varietal introduction
21.	Thiruchuli	Vadakkunatham	1	Balckgram Greengram	Poor management practices Low productivity	Integrated Production Technology
22.	Kariappatti and Aruppukkottai	Aviyoor Amanakkunatham	4 3	Castor	Use of low yielding variety	Hybrid introduction
23.	Sivakasi and Vembakkottai	Erichchanatham D. Reddiyapatti O.Muthuswamipuram	4 2 1	Sunflower	Use of low yielding variety	Hybrid introduction

2.9 Priority thrust areas

S. No	Thrust area
	Crop production
1	Farm Mechanisation/ Mechanised sowing
2	Drought management practices
3	Varietal / hybrid introduction
4.	Weather based crop planning and response farming
5.	Micro Irrigation and water / moisture conservation measures
6.	Integrated Pest and disease management
7.	Arid zone fruit crops – management
8. ln	tegrated farming system
.9	Weed management technologies
10	Integrated Production Technology/ ICM practices
	Animal Husbandry
1	Cattle – breed improvement
2	Animal Nutrition in cattle – to improve fertility and health
3	Poultry Disease management – raniket disease management
4	Breed improvement in goats – to sustain high temperature and drought
	Home Science
1	Value addition in Arid Zone fruits
2	Extruded products from millets
3	Extraction of oleo resins from chillies and jasmine
4	Packaging technology for spices
	Farm machinery
1	Farm mechanization – seed drills, weeders, threshers and Improved paddy transplanter for square planting
2	Motorised power weeder with adjustable row spacing
3	Processing of pulses and sunflower

PART III - TECHNICAL ACHIEVEMENTS

J.A. Detail								
	(DFT			F	LD		
		1				2		
Nu	Number of OFTs Number of farmers			Number of FLDs Number of farme			ber of farmers	
Target	Achievement	Target	Achievement	Targets	Achievement	Target	Achievement	
8	8	70 1	06 2	0	20	140	404	

3.A. Details of target and achievements of mandatory activities

Training				Extension Programmes			
3				4			
Numb	er of Courses Number of Participants		Number of Programmes Number of particip			of participants	
Target	Achievement	Target	Achievement	Target	Achievement	Target	Achievement
75 77		2000	2387	125	292	5000	10771

Seed	Production (Qtl.)	Plantir	Planting materials (Nos.)		
	5		6		
Target	Achievement	Target	Achievement		
		Seedlings & Grafts	2958		

Livestock, poultry	v strains and fingerlings (No.)	Bio	p-products (Kg)	
	7		8	
Target	Achievement	Target	Achievement	
Ornamental fish	132	Portable vermi unit	20 Nos.	

									entions					
S. N O	Thrust area	Crop/ Enterpri se	ldentified Problem	Title of OFT if any	Title of FLD if any	Numb er of Traini ng (farme rs)	Numbe r of Trainin g (Youth s)	Number of Training (extensio n personn el)	Extensi on activitie s (No.)	Supp ly of seed s (Qtl.)	Supply of planting material s (No.)	Supply of livesto ck (No.)	Sup y o bic proc cts	f) du
													No	Κ
1 Va	riety evaluatio n	Rice Su	perfine rice variety BPT 5204 is in vogue due to market preferenc e It is prone to blast disease Alternative to BPT required	Assess ment of rice varietie s for product ivity and market prefere nce	1					Seed s				<u>g</u>
2. V	ariety evaluatio m	Black gram	Low yields. Flower drop Weed menace Broad cast sowing Poor establish ment	Assess ment of blackgr am varietie s for enhanc ing product ivity by floral retensi on	6				1	Seed s Pulse wond er				
3.1	ntegrated Productio n Technolo gy	Redgram L	ow er yield due to improper planting method Non adoption of foliar spray during flowering stage Improper pest managem ent practices	Assess ment of differen t crop establis hment techniq ues in Redgra m						Seed				

3.B1. Abstract of interventions undertaken based on thrust areas identified for the district as given in SI.No.2.7

4. M	irrigation	Blackgra m	Low productivit y due to lcal variety Inadquate plant population Non adoption of INM and water managem ent practices	Mini mobile sprinkle r irrigatio n in blackgr am				Seed s		
5. M	ed sowing	Groundn ut	Cultivating old variety – poor yielding Non applicatio n of Gypsum Pest and disease problem (Thrips and leaf spot)	Assess ment of mecha nised sowing in ground nut	1					
6. V	ariety introducti on	Chillies	Use of low yielding variety	Assess ment of chillie varietie s for yield and market ablity as spice	13			Seed s		
7. M	ilc h animals improvem ent	Dairy Low	milk yield Fertility problem and esterous synchroni sation in animals	Mange ment of post partum anestru m in crossbr ed cows				Miner al mixtu re Dewo rming liquid		
8. P	oultry Disease managem ent	Poultry Ra	h ikhet disease is disastrous in poultry Mortality due to Ranikhet disease	Control of Ranikh et disease in desi chicken	1		2	RDV K Vacci ne Lasot drops Oral pellet Ranik het vacci ne		

9. H	yb rid	Rice Low		In	trod	4		1	Seed			
	introducti on		yielding varieties Non adoption of INM and IPM Low producti vity		uction of Co(R) H 3 rice hybri d under SRI							
10	Drought tolerant rice variety introducti on	Rice	Low productivit y Drought Use of local variety Poor managem ent practices	In	trod uction of Semi dry rice variet y Anna	4		1	Seed Chem icals			
	Farm machanis ation in rice	Rice La	bour scarcity Uneven population Delayed operations	Popul	arisati on of fully mech anize d cultiv ation of rice		1	1	Seed			
12	Varity introducti on	Bajra Low	yielding variety Terminal drought	In	trod uction of bajra variet y Co(C u) 9	4						
13 	Variety introducti o	Guinea grass	Low productivit y by Local variety	In	trod uction of Co(G G) 3 Guine a grass	1				Fodder slips		

4.4	I hade at 2	O	Mara	Dec. 1		4		D - · · ·	En al de la		
14	Hybrid popularis ation	Cumbu napier hybrid grass + Desmant hus	Non availability of fodder Low productivit y by Local variety	Popul	arisati on of Co(C N) 4 Cumb u Napie r hybri d grass + legu me fodde r desm anthu s	4		Desm anthu s seed	Fodder slips		
15 V	′a riety popularis ation/ Horticultu re	Onion U	se of local variety Poor productivit y High bulb cost	Popul	arisati on of Co(5) Onion			Seed	Bulb		
16 V	′a riety popularis ation/ Horticultu re	Onion U	se of local variety Poor productivit y High bulb cost	Popul	aisati on of Nasik red Bellar y Onoio n			Seed	Bulb		
17	Popularis ation of Poultry breed	Poultry Po	or egg production Slow growing breeds used	Popul	arisati on of CARI breed Aseel backy rad poultr V	1		CARI Aseel poultr y			
18 V	′a riety introducti on	Kudiraiv alli			y Popul arisati on Kudir aivali variet y Co 2	1		Seed			

19 A 20 F	n imal Nutrition forti cultu re	Goat Low Mango Lov	Low	Popul	arisati on of miner al salt lick cake in goat nutriti on gh densit	1				Mineral salt lick cake Seedling s		
21		Sesame	population	In	y planti ng in mang o tegr	1			Seed			
	crop managem ent		variety Manganes e deficiency Sesamum wilt		ated Crop Mana gemn t in Sesa mum				Chem icals			
22 F	ro ductio n technolog y	Blackgra m	Lower yield due to use of local variety Inadequat e plant population Non adoption of foliar spray of nutrients Micro nutrient applicatio n is seldom done leading to poor pod setting and reduced seed weight. Flower dropping and reduced seed size.		Popul arisati on of VBN (Bg) 3 Black gram	8	1	1	Seed Pulse wond er			

23 F	Pro ductio	Greenar	Lower	Popul		8	1	1	Seed		
23 F	Pro ductio n technolog y	Greengr am	Lower yield due to use of local variety Inadequat e plant population Non adoption of foliar spray of nutrients Micro nutrient applicatio n is seldom done leading to poor pod setting and reduced seed weight. Flower dropping and reduced seed size.	Popul	arisati on of VBN (GG) 3 green gram	8	1	1	Seed Pulse wond er		
24 N	le chaniz ed sowing	Groundn ut	Drudgery of labour Non availability of labour for sowing Inadequat e plant population	Mec	h anise d sowin g in Grou ndnut	1			Seed		
25 1	СМ	Castor	Varieties are low yielding Non adoption of INM	In	trod uction of casto r hybri d YRC H 1	1			Seed		
26	СМ	Sunflowe r	Varieties are low yielding Non adoption of INM	Popul	arisat on of Sunfl ower hybri d KBS H 1	2			Seed		

27 0	tha ff cutter popularis ation	Chaff cutter	Labour scarcity Fodder wastage Drudgery of labour	Popul	arisati on of Chaff cutter	4	1	3			
28 F	oultry productio n	Homeste ad incubator	Low hatching tendency	Но	me stead incub ator for desi egg hatchi ng	1					

3.B2. Details of technology used during reporting period

-		during reporting period			No.of	programmes of	conducted
S.No	Title of Technology	Source of technology	Crop/enterprise	OFT	FLD	Training	Others (Specify) Field Day
1	2	3	4	5	6	7	8
	essment of rice varieties for productivity and market preference	TNAU	Rice 1			1	
2 Ass	essment of blackgram varieties for enhancing productivity by floral retension	TNAU B	lack gram	1		6	
3	Assessment of different crop establishment techniques in Redgram	TNAU and UAS, Dharwad	Redgram	1		-	1
4 Min	i mobile sprinkler irrigation in blackgram	TNAU Bla	ckgram	1		-	
	essment of mechanised sowing in groundnut	ICRISAT Grou	ndnut	1		1	
6 Ass	essment of chillie varieties for yield and marketablity as spice	UAS, Bangalore and Gundur	Chillies 1			13	
7	Mangement of post partum anestrum in crossbred cows	TANUVAS Dairy		1		-	
8 Cor	t rol of Ranikhet disease in desi chicken	TANUVAS Pou	ltry	1		1	
9 Intr	oduction of Co(R)H 3 rice hybrid uner SRI	TNAU Ri	се		1	4	1
10	Introduction of Semi dry rice variety Anna	TNAU Ri	се	1		4	1
11 Po	pularisation of fully mechanized cultivation of rice	TNAU Ri	ce		1	1	
12	Introduction of bajra variety Co(Cu) 9	TNAU Bajr	а		1	4	
13 Int	3 Guinea grass	TNAU Gu	inea grass		1	1	
14 Po	pularisation of Co(CN) 4 Cumbu Napier hybrid grass + legume fodder desmanthus	TNAU Cum	bu napier hybrid grass + Desmanthus	1		4	

15 Po	Onion	TNAU On	ion		1 -		
16	Populaisation of Nasik red Bellary Onion	IIHR, Bangalore	Onion		1 -		
17 Po	breed Aseel for backyrad poultry	CARI Pou	ltry		11		1
18 Po	pularisation Kudiraivali variety Co 2	TNAU Kud	iraivalli		11		
19 Po	mineral salt lick cake in goat nutrition	TANUVAS Goat			11		
20 Hi	gh density planting in mango	TNAU Ma	ngo		1 -		
21 Int	egrated Crop Managemnt in Sesamum	TNAU Sesam	е		11		
22 Po	pularisation of VBN (BG) 3 Blackgram	TNAU Bla	ckgram		19		1
23 Po	pularisation of VBN (GG) 3 greengram	TNAU Gree	ngram		19		1
24	Mechanised sowing in Groundnut	TNAU Grou	ndnut		12		
25 Inti	oduction of castor hybrid YRCH 1	TNAU Ca	stor		11		
26 Po	pularisaton of Sunflower hybrid KBSH 1	UAS, Bangalore	Sunflower		12		
27 Po	pularisation of Chaff cutter	TANUVAS Chaff	cutter		14		
28 Ho	m estead incubator for desi egg hatching	TANUVAS Hom	estead incubator	1		1	

3.B2 contd..

						No	. of farme	ers cover	ed						
	OFT FLD					D			Traiı	ning			Others (Field		
Gen	neral	SC	/ST	Gen	eral	SC	/ST	Gen	eral	SC	/ST	Gen	General SC/ST		
М	F	М	F	М	F	М	F	М	F	М	F	М	F	М	F
9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
48	40	10	8	191	122	55	36 10	71	1009	150	157 11	7	78	37	29

<u>PART IV - On Farm Trial</u> 4.A1. Abstract on the number of technologies assessed in respect of crops

Thematic areas	Cereals	Oilseeds	Pulses	Commercial Crops	Vegetables F	ru its	Flower	Plantation crops	Tuber Crops	TOTAL
Integrated Nutrient										
Management										
Varietal Evaluation	1		1		1					3
Integrated Pest										
Management										
Integrated Crop			2							2
Management			2							2
Integrated Disease										
Management										
Small Scale Income										
Generation										
Enterprises										
Weed Management										1

Resource Conservation Technology							
Farm Machineries		1					
Integrated Farming							
System							
Seed / Plant							
production							
Value addition							
Drudgery							
Reduction							
Storage Technique							
Mushroom							
cultivation							
Total	1	13		1		6	

4.A2. Abstract on the number of technologies refined in respect of crops

Thematic areas	Cereals	Oilseeds	Pulses	Commercial Crops	Vegetables F	ru its	Flower	Plantation crops	Tuber Crops	TOTAL
Integrated Nutrient										
Management										
Varietal Evaluation										
Integrated Pest										
Management										
Integrated Crop										
Management										
Integrated Disease										
Management										
Small Scale Income										
Generation										
Enterprises										
Weed Management										
Resource										
Conservation										
Technology										
Farm Machineries										
Integrated Farming										
System									ļ	
Seed / Plant										
production									ļ	
Value addition										
Drudgery										
Reduction									ļ	
Storage Technique									<u> </u>	
Mushroom										
cultivation									<u> </u>	
Total									<u> </u>	

4.A3. Abstract on the number of technologies assessed in respect of livestock enterprises

Thematic areas	Cattle	Poultry	Piggery	Rabbitry	Fisheries	TOTAL
Evaluation of Breeds						
Nutrition Management	1					1
Disease of Management	1					1
Value Addition						

Production and Management				
Feed and Fodder				
Small Scale income generating enterprises				
TOTAL	11			2

4.A4. Abstract on the number of technologies refined in respect of livestock enterprises

Thematic areas	Cattle	Poultry	Piggery	Rabbitry	Fisheries	TOTAL
Evaluation of Breeds						
Nutrition Management						
Disease of Management						
Value Addition						
Production and Management						
Feed and Fodder						
Small Scale income generating enterprises						
TOTAL						

4.B. Achievements on technologies Assessed and Refined

4.B.1. Technologies Assessed under various Crops

Thematic areas	Сгор	Name of the technology assessed	No. of trials	Number of farmers	Area in ha
Integrated Nutrient Management	Rice	Assessment of rice varieties for productivity and market preference	4	4	1.6
Varietal / Hybrid Evaluation	Blackgram	Assessment of blackgram varieties for enhancing productivity by floral retension	5 5		2.0
	Chilli	Assessment of chillie varieties for yield and marketablity as spice	5	5	2.0
Integrated Pest Management					
Integrated Crop Management	Redgram	Assessment of different crop establishment techniques in Redgram	5	5	1.5
Integrated Disease Management	Blackgram	Mini mobile sprinkler irrigation in blackgram	5	5	2.0
Small Scale Income Generation Enterprises					
Weed Management					
Resource Conservation Technology					
Farm Machineries	Groundnut	Assessment of mechanised sowing in groundnut	5	5	2.0
Integrated Farming System					
Seed / Plant production					
Value addition					
Drudgery Reduction					
Storage Technique					
Mushroom cultivation					
Total			34 34		13

4.B.2. Technologies Refined under various Crops - Nil

Thematic areas	Crop	Name of the technology assessed	No. of trials	Number of farmers	Area in ha
Integrated Nutrient Management					
Varietal Evaluation					
Integrated Pest Management					
Integrated Crop Management					
Integrated Disease Management					
Small Scale Income Generation Enterprises					
Weed Management					
Resource Conservation Technology					
Farm Machineries					
Integrated Farming System					
Seed / Plant production					
Value addition					
Drudgery Reduction					
Storage Technique					
Mushroom cultivation					
Total					

Name of the Name of the technology Thematic areas livestock No. of trials No. of farmers assessed enterprise Evaluation of breeds Cattle 50 animals 25 Nutrition management Mangement of post partum anestrum in crossbred cows Disease management Poultry Control of 1000 birds 47 Ranikhet disease in desi chicken Value addition Production and management Feed and fodder Small scale income generating enterprises 27 2 Total

4.B.3. Technologies assessed under Livestock and other enterprises

4.B.4. Technologies Refined under	Livestock and other enterprises	- Nil
-----------------------------------	---------------------------------	-------

Thematic areas	Name of the livestock enterprise	Name of the technology assessed	No. of trials	No. of farmers
Evaluation of breeds				
Nutrition management				
Disease management				
Value addition				
Production and management				
Feed and fodder				
Small scale income generating enterprises				
Total				

4.C1. Results of Technologies Assessed

Results of On Farm Trial

Crop/ enterprise	Farming situation	Problem definition	Title of OFT	No. of trials	Technology Assessed	Param eters of assess	Data on the parameter	Results of assess	Feedb ack from the	Any refi ne me nt	Justifi catio n for refine
12		3	4	5	6	ment 7	8	ment 9	farmer 10	nee ded 11	ment
Rice Irriga	d te	Superfine rice variety BPT 5204 is in vogue due to market preference It is prone to blast disease Alternative to BPT required	Assessment of rice Varieties and productivity and market preference	3 4 BPT	5204 CO (R) 49 CO (R) 48	No.of Product ive tillers/m 2 No.of filled grains / panicle 1000 grain weight (g) Seed yield (q/ha)	T.O.1: No.of Productive tillers/m ² - 236 No.of filled grains / panicle - 91 1000 grain weight (g) – 18.25 Seed yield (q/ha) – 54.25 T.O.2: No.of Productive tillers/m ² - 238 No.of filled grains / panicle - 103 1000 grain weight (g) – 21 Seed yield (q/ha) – 59 T.O.3: No.of Productive tillers/m ² - 244 No.of filled grains / panicle - 115 1000 grain weight (g) – 20.25 Seed yield (q/ha) – 63.8	The yield recorded by CO (R) 48 is better than other two varieties. CO 48 is better alternativ e to BPT 5204 in terms of fine variety, high yield and moderate ly blast resistant.	CO (R) 48 is suitabl e for cookin g. Better choice of variety in terms of quality and yield.		12

Black gram	Rainf ed	Low yields. Flower drop Weed menace Broad cast sowing Poor	Assessment of blackgram varieties for enhancing productivity by floral	5	TOP 1(FP) Vamba n (Bg) 4 TOP 2 Vamba n (Bg) 5	Popula tion/m 2 No.of pods/p lant No. of	TOP 1 (FP) Population/m2 - 32 No.of pods/plant - 35 No. of seeds/pod - 7	m variety	Vamban(Bg) 5 blackgra m variety recorded higher yield over	
		establishment	retension		TOP 3 ADT 5	seeds/ pod Days to 50% floweri ng Test weight (g) Yield (kg/ha) BC ratio	Days to 50% flowering - 38 Test weight (g) - 4.7 Yield (kg/ha) - 650 BC ratio - 2.50 TOP 2 Population/m2 - 32 No.of pods/plant - 33 No. of seeds/pod - 8 Days to 50% flowering - 37 Test weight (g) - 4.8 Yield (kg/ha) - 735 BC ratio - 2.77 TOP 3 Population/m2 - 31 No.of pods/plant - 28 No. of seeds/pod - 27 Days to 50% flowering - 32 Test weight (g) - 3.2 Yield (kg/ha) - 592 BC ratio - 2.15	Produce d higher yield and profitabli ty under rainfed conditio n	bther varieties besides tolerent to Yellow Mosaic disease	

Redgram	Lower yield due to improper planting method Non adoption of foliar spray during flowering stage Improper pest management practices	Assessment of different crop establishme nt techniques in Redgram	3	TOP 1 (FP) Dibbling TOP 2 Sowing using seed drill TOP 3 Seedlin g raised in polybag s and tranplan ted	Area covere d by seed drill in 1 day Pla nt pop ulat ion/ m ² Ro ot len gth at 20 DA S Shoot length at 20 DA S Shoot length at 20 DAS Yiel d (kg/ ha) BC rati o	TOP 1(FP) Area covered by seed drill in 1 day Plant population/m ² 8.6 Root length at 20 DAS-15.2 Shoot length at 20 DAS-27.46 Yield (kg/ha)- 674 BC ratio 3.78 TOP 2 Area covered by seed drill in 1 day Plant population/m ² -11 Root length at 20 DAS-22.7 Shoot length at 20 DAS-22.7 Shoot length at 20 DAS-33.6 Yield (kg/ha)- 830 BC ratio 3.1				
---------	--	---	---	---	---	--	--	--	--	--

Blackg ram	Rainf ed	Low productivity due to Ical variety Inadquate plant population Non adoption of INM and water management practices	Mini mobile sprinkler irrigation in blackgram	2	TOP 1 (FP) Dryland blackgr am Vamba n(Bg) 3 without any supple mental irrigatio n TOP 2 Dryland blackgr am Vamba n(Bg) 3 without any supple mented with mini mobile irrigatio	Plant popuat ion/m ² No.of pods/ plant Test weigh t Yield (Kg/h a) BC ratio	TOP 1 (FP) Plant population/m ² 31 No.of pods/plant-29.8 Test weight- 3.94 Yield (Kg/ha)- 564 BC ratio 2.05 TOP 2 Plant population/m ² 30.4 No.of pods/plant— 46.8 Test weight— 4.32 Yield (Kg/ha)- 644 BC ratio 2.93 TOP 3 Plant population/m ² - 31.6		
					n at flowerin g TOP 3 Dryland blackgr am Vamba n(Bg) 3 without any supple mented with mini mobile irrigatio n at flowerin g and pod formatio n stages		No.of pods/plan t-50 Test weigh t- 4.38 Yield (Kg/ha)- 710 BC ratio -3.26		

Groundnut Ra inf ed	variety – of poor me yielding so	ssessment 3 f nechanised owing in roundnut	TOP 1 (FP) FP Sowing behind country plough TOP 2 Sowing with tractor drawn seed cum fertilizer drill TOP 3 Sowing with tractor drawn seed drill in broad bed and furrows	Germi nation (%) Plant popul ation/ m ² No. of filled pods /plant Pod yield (q/ha) B:C ratio	TOP 1 (FP) Germination (%)-78.6 Plant population/m ² - 28 No. of filled pods /plant- 24.4 Pod yield (q/ha)-12.1 B:C ratio-2.46 TOP 2 Germination (%)-89 Plant population/m ² - 31.4 No. of filled pods /plant-38 Pod yield (q/ha)-16 B:C ratio-3.33 TOP 3 Germination (%)-81.2 Plant population/m ² - 30.8 No. of filled pods /plant-36 Pod yield (q/ha)-14.8 B:C ratio-2.05			
------------------------	--	--	---	--	--	--	--	--

Chilli Irriga	d	te	Farmers are predominantly cultivating local varieties which are poor yielder and lower market price.	Assessment of chilli Varieties f or yield an d marketability as spice	5 Lo	cal variety Byadgi G4	Plant height (cm) No.of fruits / plant Fruit length (cm) Dry fruit yield (q/ha)	T.O.1: Plant height (cm) -95.4 No.of fruits / plant - 95 Fruit length (cm) -8.5 Dry fruit yield (q/ha) - 23.24 T.O.2: Plant height (cm) -107 No.of fruits / plant - 125 Fruit length (cm) -10.2 Dry fruit yield (q/ha) - 32.5 T.O.3: Plant height (cm) -103 No.of fruits / plant - 114 Fruit length (cm) -10.12 Dry fruit yield (q/ha) - 30.56	Byadgi was given high yield and better market price when compare d to G4 and local variety.	High appeali ng colour of pod gives better price in the market. Hence Byadgi is most prefera ble in the market side.	
Dairy			Low milk yield Fertility problem and esterous synchronisatio n in animals	Mangement of post partum anestrum in crossbred cows	5 0 a ni m al s	TOP 1 (FP) Conven tional method TOP 2 Dewor ming and supple mentati on of TANUV AS area specific Mineral mixture	Mil k yiel d/m ont h or lact atio n	TOP 1 (FP) Milk yield/day 12.1 or lactation TOP 2 Milk yield/day or lactation— 12.6			

Poultry	Ranikhet disease is disastrous in poultry Mortality due to Ranikhet disease	Control of Ranikhet disease in desi chicken	1 0 0 bi rd s	TOP 1 (FP) No vaccinat ion TOP 2 Lasota vaccine eye drops on 7 th and 14 th day RDVK– Subcuta neous on 8 th and 16 th week TOP 3 Oral pellet Ranikhe t vaccine on 7 th and 14 th day RDVK– Subcuta neous on 8 th and 14 th week	Mor talit y patt ern	TOP 1 (FP) Mortality 35% TOP 2 Mortality- 9.4% TOP 3 Mortality – No mortality	ng of ranikhet disease in poultry either through Lasota vaccine eye drops on 7 th and 14 th day or RDVK– Subcuta neous on 8 th and 16 th week or oral pellet Ranikhe t vaccine on 7 th and 14 th day or RDVK– Subcuta neous on 8 th and 16 th week or oral pellet Ranikhe t vaccine the mortality of	Manage ment of ranikhet disease in poultry by Lasota vaccine eye drops on 7 th and 14 th day or RDVK– Subcutan eous on 8 th and 16 th week or oral pellet Ranikhet vaccine on 7 th and 14 th day is highly helpful to the poultry farmers to reduce the mortality complete	
				week			of poultry.	mortality complete ly.	

Technology Assessed	Source of Technology	Production	Please give the unit (kg/ha, t/ha, lit/animal, nuts/palm, nuts/palm/year)	Net Return (Profit) in Rs. / ha	B:C Ratio
13 14		15	16	17	18
Technology option 1: (Farmer's practice) BPT 5204	APAU 54	.25	q/ha	34333 2	.35
Technology option 2: CO (R) 48	TNAU	63.80	q/ha	38425 2	.52
Technology option 3: CO (R) 49	TNAU	59.00	q/ha	27773 2	.10

Technology Assessed	Source of Technology	Production	Please give the unit (kg/ha, t/ha, lit/animal, nuts/palm, nuts/palm/year)	Net Return (Profit) in Rs. / ha	BC Ratio
13 14		15	16	17	18
Technology option 1 (Farmer's practice) Vamban (Bg) 4	TNAU	6.50 q	/ha	13626	2.50
Technology option 2 Vamban (Bg) 5	TNAU	7.35 q	/ha	16454	2.77
Technology option 3 ADT 5	TNAU	5.92 q	/ha	10142	2.15

-

-

Contd.. OFT 3

Technology Assessed	Source of Technology	Production	Please give the unit (kg/ha, t/ha, lit/animal, nuts/palm, nuts/palm/year)	Net Return (Profit) in Rs. / unit	BC Ratio
13 14		15	16	17	18
Technology option 1 (Farmer's practice) Dibbling		6.74	q/ha 29	760	3.78
Technology option 2 Seedling raised in polybags and tranplanted	UAS, Dharwad	8.30	q/ha 34	900	3.1

Technology Assessed	Source of Technology	Production	Please give the unit (kg/ha, t/ha, lit/animal, nuts/palm, nuts/palm/year)	Net Return (Profit) in Rs. / unit	BC Ratio
13 14		15	16	17	18
Technology option 1 (Farmer's practice) Dryland blackgram VBN (Bg) 3 without any supplemental irrigation	TNAU 5	.64	q/ha 12	998	2.05
Technology option 2 Dryland blackgram VBN (Bg) 3 supplemented with mini mobile irrigation at flowering	ICRISAT 6	.44	q/ha 19	080	2.93
Technology option 3 Dryland blackgram Vamban(Bg) 3 supplemented with mini mobile irrigation at flowering and pod formation stages	UAS, Bangalore	7.10	q/ha 22	150	3.26

Technology Assessed	Source of Technology	Production	Please give the unit (kg/ha, t/ha, lit/animal, nuts/palm, nuts/palm/year)	Net Return (Profit) in Rs. / unit	BC Ratio
13 14		15	16	17	18
Technology option 1 (Farmer's practice) Sowing behind country plough	Farmers	12 q	/ha	32340	2.46
Technology option 2 Sowing with tractor drawn seed cum fertilizer drill	ICRISAT	18 q	/ha	50390	3.33
Technology option 3 Sowing with tractor drawn seed drill in broad bed and furrows	ICRISAT	12 q	/ha	22610	1.95

- -

-

Contd.. OFT 6

Technology Assessed	Source of Technology	Production	Please give the unit (kg/ha, t/ha, lit/animal, nuts/palm, nuts/palm/year)	Net Return (Profit) in Rs. / unit	BC Ratio
13 14		15	16	17	18
Technology option 1: (Farmer's practice) Local Variety	-	23.24	q/ha	33652 2	.03
Technology option 2: Baydgi	UAS, Bangalore	32.50	q/ha	64375 2	.99
Technology option 3: G4	Gundur local	30.56	q/ha	55375 2	.75

Technology Assessed	Source of Technology	Production	Please give the unit (kg/ha, t/ha, lit/animal, nuts/palm, nuts/palm/year)	Net Return (Profit) in Rs. / unit	BC Ratio
13 14		15	16	17	18
Technology option 1 (Farmer's practice) Conventional method	Farmers	12.1	Lit/day 1	17.2	1.98
Technology option 3 Deworming and supplementation of TANUVAS area specific Mineral mixture	TANUVAS	12.6	Lit/day 1	33.4	2.28

Technology Assessed	Source of Technology	Production	Please give the unit (kg/ha, t/ha, lit/animal, nuts/palm, nuts/palm/year)	Net Return (Profit) in Rs. / unit	BC Ratio
13 14		15	16	17 18	
Technology option 1 (Farmer's practice) No vaccination	Farmers	25/300 birds	Birds (No.)	78500/300 birds	1.69/ 300 birds
Technology option 2 Lasota vaccine eye drops on 7 th and 14 th day RDVK– Subcutaneous on 8 th and 16 th week	TANUVAS	23/1000 birds	Birds (No.)	214940/ 1000 birds	1.79/ 1000 birds
Technology option 3 Oral pellet Ranikhet vaccine on 7 th and 14 th day RDVK – Subcutaneous on 8 th and 16 th week	TANUVAS	0/ 1000 birds	Birds (No.)	220000/ 1000 birds	1.84/ 1000 birds

4.C2. Details of each On Farm Trial for assessment to be furnished in the following format separately as per the following details

OFT 1

1) Title of Technology Assessed: Assessment of rice varieties for productivity and market preference

2) Problem Definition:

- Superfine rice variety BPT 5204 is in vogue due to market preference
- It is prone to blast disease
- Alternative to BPT is required
- 3) Details of technologies selected for assessment:

Technologies assessed	Details of technologies assessed
Technological option 1:	BPT 5204
(Farmers Practice)	
Technological option 2:	CO (R) 49
Technological option 3:	CO (R) 48

- 4) Source of technology: TNAU
- 5) Production system and thematic area: Market preference / Varietal evaluation
- 6) Performance of the Technology with performance indicators:

Village Kathalampatti	Farmers practice - BPT 5204			Te	Technological option 1 – CO (R) 49				Technological option 2 – CO (R) 48			
Farmers' Name	No. of productiv e tillers / m ²	No. of filled grains/ panicle	1000 grain weight (g)	Seed yield (q/ha)	No. of producti ve tillers / m ²	No. of filled grains / panicle	1000 grain weight (g)	Seed yield (q/ha)	No. of productive tillers / m ²	No. of filled grains/ panicle	1000 grain weight (g)	Seed yield (q/ha)
G.Vellaiyammal	235	89	17 5	2	229 10	9	20	60	248	120	20	62
S. Valli	240	95	20	54	238	95	22	58	240	110	21	69
G. Mallika	237	88	17	56	240	88	19	56	234	105	19	60
I. Bagyaraj	230	90	19	55	245	120	23	62	253	125	21	64
MEAN	236	91	18.2	54.2	238	103	21.0	59	248	115	20.2	63.8

Economics

Village Kathalampatti	Farmers practice - BPT 5204			Technological option 1 – CO (R) 49				Technological option 2 – CO (R) 48				
Farmers' Name	Gross return (Rs./ha)	Cost of cultivati on (Rs/ha)	Net return (Rs./ ha)	B:C Ratio	Gross return (Rs./ha)	Cost of cultivati on (Rs/ha)	Net return (Rs./ha)	B:C Ratio	Gross return (Rs./ha)	Cost of cultivati on (Rs/ha)	Net return (Rs./ ha)	B:C Ratio
G.Vellaiyammal	57200 2	5 360 3 ⁷	840	2.26	54000 25	5 250	28750	2.14	62000	25300	36700	2.45
S. Valli	59400 2	5 320 34	080	2.35	52200 2	5 300	26900	2.06	69000	25350	43650	2.72
G. Mallika	61600 2	5 350 36	6 250	2.43	50400 25	5 400	25000	1.98	60000	25320	34680	2.37
I. Bagyaraj	60500 2	5 340 3	5 160	2.39	55800 2	5 360	30440	2.20	64000	25330	38670	2.53
MEAN	59675	25342	34333	2.35	53100	25328	27773	2.10	63750	25325	38425	2.52

- 7) Feedback, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques Market preference for Co (R) 48 is as good as BPT 5204 and sold at the market price of Rs.10 and Rs.11 /kg of seeds respectively. The keeping quality of cooked food is good. The coefficient of grain expansion is good. At Virudhunagar, among the three rice varieties assessed for market preference and productivity, Co (R) 48 recorded more number of productive tillers of 248/m². The test weight was least in BPT 5204 indicating that the variety is relatively slender than other two varieties. The next better variety was Co (R) 48 with test weight of 20.2. The grain yield recorded was maximum in Co (R) 48 with 63.8 q/ha which is 18 % higher than BPT 5204 and 8 % over Co (R) 49. The net return and B: C ratio were higher in Co (R) 48 compared to the other two assessed varieties.
 8) Final recommendation for micro level situation
- The yield recommendation for micro reversituation
 The yield recorded by CO (R) 48 is better than other two varieties.
 CO 48 is better alternative to BPT 5204 in terms of fine variety, high yield and moderately resistant to blast.
 Constraints identified and feedback for research
- Long slender super fine variety is preferred in the market and consumers. Hence, fine varieties in short and medium duration groups need be evolved. Further research to refine the variety CO (R) 49 may be done.
- Process of farmers participation and their reaction
 They realized that CO (R) 48 is suitable for cooking and better choice of variety in terms of quality and yield.

- 1) Title of the technology Assessed : Assessment of blackgram varieties for enhancing productivity by floral retension
- 2) Problem Definition:
 - Lower yield due to use of local variety
 - Poor crop establishment due to broadcast sowing
 - Non adoption of foliar spray of nutrients during flowering stage
 - Micro nutrient application is seldom done leading to poor pod setting and reduced seed weight.
 - Flower dropping and reduced seed size
 - Weed menace
- 3) Details of technologies selected for assessment / refinement

Technologies Assessed	Details of technologies assessed
Technological Option 1	VBN (Bg) 4
(Farmer's practice)	
Technological Option 2	VBN (Bg) 5
Technological Option 3	ADT 5

- 4) Source of technology
- 5) Production system and thematic area
- 6) Performance of the Technology with performance indicators

Technological Option 1 : VBN (Bg) 4

:

:

Farmers' and Village Name	Population/m ²	Days to 50 % flowering	No. of flowers/plant	No. of clusters/ plant	No.of pods/ plant	Test weight (g)	Seed yield (kg/ha)
Th. A.Selvaraj Naarthampatti	33 39	83		10	32	4.5	637
Tmt. P.Selvi Naarthampatti	32 36	84		11	35	4.4	722
Tr. D.Ramu Naarthampatti	31 38	82		10	36	4.7	585
Th.A. Velanganni Naarthampatti	33 38	78		12	33	4.9	618
Tmt.S.Subbulakshmi Muthuramalingapuram	30 40	92		12	41	4.8	689
Mean	32	38	84	11	35	4.7	650

Technological Option 2 : VBN (Bg) 5

Farmers' and Village Name	Population/m ²	Days to 50 % flowering	No. of flowers/plant	No. of clusters/ plant	No.of pods/ plant	Test weight (g)	Seed yield (kg/ha)
Th. A.Selvaraj Naarthampatti	31 40	84		14	32	4.8	720
Tmt. P.Selvi Naarthampatti	30 37	93		13	36	4.7	816
Tr. D.Ramu Naarthampatti	33 35	92		11	40	4.9	662
Th.A. Velanganni Naarthampatti	33 38	87		15	35	4.8	698
Tmt.S.Subbulakshmi Muthuramalingapuram	31 36	92		12	42	4.7	779
Mean	32	37	90	13	37	4.8	735

Varietal evaluation

Tamil Nadu Agricultural University

Technological Option 3 : ADT 5

Farmers' and Village Name	Population/m ²	Days to 50 % flowering	No. of flowers/plant	No. of clusters/ plant	No.of pods/ plant	Test weight (g)	Seed yield (kg/ha)
Th. A.Selvaraj Naarthampatti	29 29	68		12	27	3.8	580
Tmt. P.Selvi Naarthampatti	32 33	74		11	30	3.6	657
Tr. D.Ramu Naarthampatti	31 32	82		13	33	3.5	533
Th.A. Velanganni Naarthampatti	33 30	78		14	31	3.6	562
Tmt.S.Subbulakshmi Muthuramalingapuram	30 35	76		12	30	3.7	628
Mean	31	32	76	12	30	3.6	592

Economics

Farmers' and Village Name	T	echnologic (Farmer's Vamban	practice)		Technological option 2 Vamban (Bg) 5				
	Cost of cultivati on (Rs./ha)	Gross return (Rs/ ha)	Net return (Rs./ha)	BC Ratio	Cost of cultivation (Rs./ha)	Gross return (Rs/ ha)	Net return (Rs./ha)	BC Ratio	
Th. A.Selvaraj Naarthampatti	9610 22	295	12685	2.32	9637	25200	15563	2.61	
Tmt. P.Selvi Naarthampatti	9252 25	270	16018	2.73	9235	28560	19325	3.09	
Tr. D.Ramu Naarthampatti	9264 20	475	11211	2.21	8975	23170	14195	2.58	
Th.A. Velanganni Naarthampatti	8482 21	630	13148	2.55	8875	24430	15555	2.75	
Tmt.S.Subbulakshmi Muthuramalingapuram	9045 24	115	15070	2.67	9632	27265	17633	2.83	
Mean	9131	22757	13626	2.50	9271	25725	16454	2.77	

Farmers' and Village		Technological option 3 ADT 5									
Name	Cost of cultivation (Rs./ha)	Gross return (Rs/ ha)	Net return (Rs./ha)	BC Ratio							
Th. A.Selvaraj											
Naarthampatti 86	91	18560	9869	2.14							
Tmt. P.Selvi											
Naarthampatti 9	391	21024	11633	2.24							
Tr. D.Ramu											
Naarthampatti 82	25	17056	8831	2.07							
Th.A. Velanganni											
Naarthampatti 85	37	17984	9447	2.11							
Tmt.S.Subbulakshmi											
Muthuramalingapuram	9168 2	0 096	10928	2.19							
Mean	8802	18944	10142	2.15							

7) Feed back, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques

At Virudhunagar, three blackgram varieties were assessed for their productivity and reduced flower drop.

The various observations recorded were as follows :

The plant population was almost the same in all the three varieties indicating good germination and consequently uniform crop stand.

The days to 50% flowering was 38, 37 and 32 in VBN (Bg) 4, VBN (Bg) 5 and ADT 5 respectively.

The flower to pod ratio was higher in variety VBN (Bg) 5

More floral retension was noticed in variety VBN (Bg) 5

The test weight recorded was maximum in VBN (Bg) 5 with 4.8 g followed by VBN (Bg) 4 with 4.7 g indicating bold grains with better filling than ADT 5 with 3.6 g.

Spraying pulse wonder reduced flower drop and increased the number of pods per plant.

The seed yields were 592, 650 and 735 in ADT 5, VBN (Bg) 4 and VBN (Bg) 5 respectively.

8) Final recommendation for micro level situation

Cultivation of blackgram variety VBN (Bg) 5 produced higher seed yield and profitability under rainfed condition and it could be recommended in large scale. The net returns and B:C ratio were higher in blackgram variety VBN (Bg) 5 compared to the other two assessed varieties.

9) Constraints identified and feedback for research

Availability of newly released variety seeds in large quantities is a major constraint.

Yellow mosaic disease problem need to be addressed.

Research for bold seeded rainfed varieties which matures early is the need of the hour as mechanised sowing warrants bold grains for easy sowing

10) Process of farmers participation and their reaction.

Farmers realized the benefit of blackgram variety VBN (Bg) 5 in terms of its higher seed yield over local variety besides tolerant to yellow mosaic virus disease.

Farmers gained knowledge about spraying of pulse wonder at 2.25 kg/ha during flowering stage to reduce the flower drop and increase the seed setting.

Training on seed production in pulses and creating awareness on foliar nutrition are highly essential to improve the pulses production.

OFT-3

- 1) Title of technology assessed : Assessment of different establishment techniques in redgram
- 2) Problem Definition :

Lower yield due to improper planting method

Non adoption of foliar spray during flowering stage

Improper pest management practices

Transplantation in red gram is seldom practiced in Virudhunagar. Since, it is successful in Maharashtra, Karnataka and Andra Pradesh hence proposed.

To produce healthy seedlings through portray method.

Ensuring optimum plant population through transplanting and crop establishment.

Seed drill sowing ensures proper placement of seeds in proper depth and better root growth.

Foliar spray induces more grain setting and arrest flower dropping.

3) Details of technology assessed/refined

Technologies assessed	Details
Farmers practice	Dibbling
Technological option 1	Seedlings raised in poly bags and transplanted

4) Source of technology: University of Agricultural Sciences, Dharwad

5) Production system/Thematic area: Crop management

6) Performance of technology with performance indicators:

Farmer name and Village			ers practice Pibbling	1		Technological option 1 Transplanted					
Plant	population / m²	Root length at 20DAS	Shoot length at 20DAS	Days to 50% floweri ng	Grain yield (kg/ha)	Plant population/ m ²	Root length at 20DAS	Shoot length at 20DAS	Days to 50% flowerin g	Grain yield (kg/ha)	
Raghavaraja, Rajapalayam	10 15.	1	27.2	71	680	11	22.3	33.6	74	720	
Ramachandraraja, Rajapalayam	9 14.	3	28.5	69	620	11	23.5	32.9	73	940	
N.Srinivasan, Muthuramalingapuram	8 15.	2	27.1	72	740	12	21.9	33.8	76	800	
R.Nagaraj, Muthuramalingapuram	8 15.	8	26.9	70	610	10	23.2	33.6	75	840	
R.Ramaraj, Muthuramalingapuram	8 15.	4	27.6	68	720	11	22.8	34.1	72	860	
Mean 8.	6	15.2	27.46	70	674	11	22.7	33.6	74	832	

Spacing 45 x 20 cm

Farmer name and Village		Farmers p Dibbli			Technological option 1 Transplanted				
Gro	ss return (Rs/ha)	Cost of cultivation (Rs/ha)	Net return (Rs/ha)	B:C Ratio	Gross return (Rs/ha)	Cost of cultivation (Rs/ha)	Net return (Rs/ha)	B:C Ratio	
Raghavaraja,Rajapalayam 40	800	10200	30600	4	43200	15600	27600	2.76	
Ramachandraraja, Rajapalayam	37200	10500	26700	3.54	56400	17500	38900	3.22	
N.Srinivasan,Muthuramalingapuram 4	4 400	11200	33200	3.96	48000	14300	33700	3.35	
R.Nagaraj,Muthuramalingapuram 36	600	10500	26100	3.48	50400	15500	34900	3.25	
R.Ramaraj, Muthuramalingapuram	43200	11000	32200	3.92	51600	17600	34000	2.93	
Mean 40	440	10680	29760	3.78	49920	16100	34900	3.1	

7) Feed back, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques

At Virudhunagar, two crop establishment techniques were assessed for their performance under rainfed condition.

The various observations recorded were as follows :

The plant population was higher with 11 /m² in transplanted crop indicating better crop establishment and consequently uniform crop stand.

The days to 50% flowering was 70 days and 74 days $\,$ in dibbled crop and transplanted crop respectively.

The root and shoot lengths were better in transplanted crop

8) Final recommendation for micro level situation

The grain yields were 674 kg/ha in dibbled crop and 832 kg/ha in transplanted crop with an yield difference of 23.4%. The net returns was highest in transplanted crop with higher B:C ratio.

9) Constraints identified and feedback for research

Medium duration redgram which is suited for transplanting need be evolved.

Redgram hybrid suited to dryland conditions will be more beneficial.

Pod borer and webber problems need to be addressed.

10) Process of farmers participation and their reaction.

Production of seedlings in large quantities is a major constraint. Cost of seedling production and cost of planting increases the production cost. Transplanting needs care as the root growth is more and adequate care has to be taken while planting.

OFT-4

1) Title of technology assessed

Assessment of irrigation with minimobile Sprinkler at critical stages of blackgram under dryland conditions

:

2) Problem Definition :

In dryland areas, blackgram yields are low due to lack of moisture in the soil and inadequate rainfall which causes moisture stress. Flowering and pod formation stages are most critical with respect to blackgram The performance of mini mobile sprinkler in providing supplemental irrigation and its feasibility need be assessed for augmenting moisture in soil and enhancing productivity of blackgram.

3) Details of technology assessed/refined

Details of technology assessed/refined

Technologies assessed	Details
Farmers practice	Dry land Blackgram VBN BG 3 without any supplemental irrigation
Technological option 1	Dry land Blackgram VBN BG 3 supplemented with minimobile irrigation at flowering
Technological option 2	Dry land Blackgram VBN BG 3 supplemented with minimobile irrigation at flowering and pod formation stages

4) Source of technology

- Tamil Nadu Agricultural University
- 5) Production system and thematic area : Varietal evaluation

:

6) Performance of the Technology with performance indicators

Technological Option 1 : Dry land Blackgram VBN BG 3 without any supplemental irrigation

Farmers' and Village Name	Population/m ²	Days to 50 % flowering	No. of clusters/ plant	No.of pods/ plant	Test weight (g)	Seed yield (kg/ha)
K.Muniammal, Aruppukottai	30 32		12	27 3	.8	520
P.Mohandas, Aruppukottai	29 34		12	32 4	.0	580
M.Jayalakshmi, Aruppukottai	30 35		13	34 4	.1	602
V.Ramasamy, Aruppukottai	34 35		11	32 4	.0	580
M.Jayaram, Aruppukottai	32 34		12	24 3	.8	540
Mean	31	34	12	29.8	3.94	564

Technological Option 2 : Dry land Blackgram VBN BG 3 supplemented with minimobile irrigation at flowering

Farmers' and Village Name	Population/m ²	Days to 50 % flowering	No. of clusters/ plant	No.of pods/ plant	Test weight (g)	Seed yield (kg/ha)
K.Muniammal, Aruppukottai	29 37		11	34	4.4	620
P.Mohandas, Aruppukottai	30 34		13	42	4.3	640
M.Jayalakshmi, Aruppukottai	33 35		12	48	4.6	710
V.Ramasamy, Aruppukottai	32 36		14	54	4.2	650
M.Jayaram, Aruppukottai	28 35		12	56	4.1	600
Mean	30.4	35.4	12.4	46.8	4.32	644

Farmers' and Village Name	Population/m ²	Days to 50 % flowering	No. of clusters/ plant	No.of pods/ plant	Test weight (g)	Seed yield (kg/ha)
K.Muniammal, Aruppukottai	29	35	11 35		4.6	680
P.Mohandas, Aruppukottai	33	34	13 44		4.4	720
M.Jayalakshmi, Aruppukottai	31	36	14 53		4.1	820
V.Ramasamy, Aruppukottai	33	37	14 56		4.6	680
M.Jayaram, Aruppukottai	32	36	12 62		4.2	650

35.6

12.8

50

4.38

710

Technological Option 3 : Dry land Blackgram VBN BG 3 supplemented with minimobile irrigation at flowering and pod formation stages

Economics

Mean

31.6

Farmer name and Village	Dry land	Farmers p Blackgram VE supplementa	BN BG 3 wit	hout any	Technological option 1 Dry land Blackgram VBN BG 3 supplemented with minimobile irrigation at flowering			
Gro	ss return (Rs/ha)	Cost of cultivation (Rs/ha)	Net return (Rs/ha)	C:B Ratio	Gross return (Rs/ha)	Cost of cultivation (Rs/ha)	Net return (Rs/ha)	C:B Ratio
K.Muniammal, Aruppukottai	23400 12	2 000	11400	1.95	27900	10000	17900	2.79
P.Mohandas, Aruppukottai	26100 12	2 500	13600	2.09	28800	9500	19300	3.03
M.Jayalakshmi, Aruppukottai	27090 13	8 000	14090	2.08	31950	10000	21950	3.20
V.Ramasamy, Aruppukottai	26100 12	2 000	14100	2.18	29250	10000	19250	2.93
M.Jayaram, Aruppukottai	24300 12	2 500	11800	1.94	27000	10000	17000	2.70
Mean 2	5380	12400	12998	2.05	28980	9900	19080	2.93

Farmer name and Village		Technological option 2 Dry land Blackgram VBN BG 3 supplemented with minimobile irrigation at flowering and pod formation stages							
Gro	ss return (Rs/ha)	Cost of cultivation (Rs/ha)	Net return (Rs/ha)	B:C Ratio					
K.Muniammal, Aruppukottai	30600 10	000	20600	3.06					
P.Mohandas, Aruppukottai	32400 10	000	22400	3.24					
M.Jayalakshmi, Aruppukottai	36900 95	00	27400	3.88					
V.Ramasamy, Aruppukottai	30600 10	000	20600	3.06					
M.Jayaram, Aruppukottai	29250 95	00	19750	3.08					
31	950	9800	22150	3.26					

7) Feed back, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques

At Virudhunagar, under dryland condition blackgram variety VBN BG 3 was assessed for its productivity by comparing the efficacy of supplemental irrigation using mini mobile sprinkler at critical crop growth stages viz., flowering alone and flowering and pod formation stages.

The various observations recorded were as follows :

The plant population was almost the same in al the tree technological options indicating good germination and consequently uniform crop stand.

The days to 50% flowering was 34, 35.4 and 35.6 in no irrigation, irrigation at flowering stage alone and irrigation at flowering and pod formation stages..

There was not much difference in number of clusters/plant irrespective of irrigation. There was distinct difference in test weight which responded to irrigation.

8) Final recommendation for micro level situation

Cultivation of blackgram variety VBN (Bg) 3 produced higher grain yield and profitability under rainfed condition if supplemented with two irrigations at flowering and pod formation stages.

9) Constraints identified and feedback for research

Availability of mini mobile sprinkler.

Varieties that perform well with one or two irrigations need be exploited.

10) Process of farmers participation and their reaction.

In rainfed tracts well water is not available and use of mini mobile sprinkler is not possible.

In tank irrigated areas the length of the suction hose and delivery hose are not sufficient enough to draw water from tank.

The amount of water supply at times of supplemental irrigation is less and time taken to irrigate is also very long.

However, the response of crop to irrigation is good.

OFT 5

- 1. Title of Technology Assessed: Assessment of mechanized sowing in groundnut
- 2. Problem Definition

General reduction trend in labour force turning to agricultural work.

Match industries and rural industries offer attractive salary structures.

Increased cost of labour and cultivation expenses.

The initial rains are crucial and if missed plant establishment is affected.

Mechanisation sows deep and ensures better crop stand and cover more area in less time.

This ensures timely sowing before depletion of optimum moisture level in soil.

Mechanisation reduces drudgery and saves time and cost.

3. Details of technologies selected for assessment

Technology option 1 – Dibbling behind country plough (Farmers Practice) Technology option 2 – Sowing with tractor drawn seed cum fertilizer drill

Technology option 3 – Sowing with tractor drawn seed drill in broad bed furrows

- 4. Source of technology: ICRISAT
- 5. Production system and thematic area: Farm Mechanisation
- 6. Performance of the Technology with performance indicators

Name of the farmer		Technology Dibbling bel (Farmers P	nind country pl	ough	Technology option 2 Sowing with tractor drawn seed cum fertilizer drill				
	Pod yield q/ha	Germinati on %	Population /m2	No.of.filled pods/plant	Pod yield q/ha	Germi nation %	Population /m2	No.of.filled pods/plant	
R. Sumathi Kariyapatti	11 7	8	28	33	15 92		33	34	
K. Vasantha Maraikulam	13 7	5	26	36	14 88		31	36	
P. Ramdevar Maraikulam	12 7	4	31	28	16 88		30	38	
R. Ramar Maraikulam	12.5	82	28	14	18	89	32	42	
M.Murugan Maraikulam 12.	0	84	27	11	17	88	31	40	
Mean	12.1 78	. 6	28	24.4	16	89	31.4	38	

Name of the farmer	Technology optic	Technology option 3								
	Sowing with tract	Sowing with tractor drawn seed drill in broad bed furrows								
	Pod yield q/ha	Population Pod yield q/ha Germination % /m2 No .of.filled pods/plant								
R. Sumathi Kariyapatti	14 75		33	35						
K. Vasantha Maraikulam	13 80		31	36						
P. Ramdevar Maraikulam	14 81		32	32						
R. Ramar Maraikulam	18 88		28	38						
M.Murugan Maraikulam	15 82		30	39						
Mean	14.8 81.	2	30.8	36						

Economics:

Name of the farmer	Dibb	Technology option 1 – Dibbling behind country plough (Farmers Practice)					Technology option 2 Sowing with tractor drawn seed cum fertilizer drill				
	Gross return (Rs/ha)	Cost of cultivation (Rs/ha)	Net return (Rs/ha)	B:C Ratio	Gross return (Rs/ha)	Cost of cultivati on (Rs/ha)	Net return (Rs/ha)	B:C Ratio			
R. Sumathi Kariyapatti	49500 22	110	27390	2.24	67500	21610	45890	3.12			
K. Vasantha Maraikulam	58500 22	110	36390	2.65	63000	21610	41390	2.92			
P. Ramdevar Maraikulam	54000 22	110	31890	2.44	72000	21610	50390	3.33			
R. Ramar Maraikulam	54000 22	110	31890	2.44	81000	21610	59390	3.75			
M.Murugan Maraikulam	56250 22	110	34140	2.54	76500	21610	54890	3.54			
Mean	54450 22	110	32340	2.46	72000	21610	50390	3.33			

Name of the farmer		Technology option 3								
	Sowing with tractor	Sowing with tractor drawn seed drill in broad bed furrows								
	Gross return (Rs/ha)	cultivation B(C Patio								
R. Sumathi Kariyapatti	51460 2	2610	28850	2.28						
K. Vasantha Maraikulam	47785 2	2610	25175	2.11						
P. Ramdevar Maraikulam	47785 2	2610	25175	2.11						
R. Ramar Maraikulam	40435 2	2610	17825	1.79						
M.Murugan Maraikulam	44110 2	44110 2 2610 21500								
Mean	46315 2	2610	23705	2.05						

7) Feed back, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques

At Virudhunagar, dibbling behind country plough, sowing using seed cum fertilizer drill and sowing in broad bed furrow former cum seed drill were compared.

The various observations recorded were as follows:

The crop establishment and growth was good in seed cum fertilizer drill sown plots.

Pod yield seed cum fertilizer drill sown plot was 8 % and 26 % more compared to broad bed furrow and dibbling behind country plough respectively.

The net return was 50390 Rs/ha and B: C ratio was 3.33 in seed cum fertilizer drill sown crop.

8) Final recommendation for micro level situation

Sowing with tractor drawn seed cum fertilizer drill is good. It covers 5 acres in a day of 8 hours. Simultaneous application of seed and fertilisers is an added advantage. The vigour and growth was better than in the farmers practice. More area is covered in less time.

9) Constraints identified and feedback for research

Machinery availability is very limited. Only 7 farmers have purchased the equipment on their own. During season, there is a huge demand for the Machinery on hiring.

10) Process of farmers participation and their reaction.

Farmers are comfortable with the machinery operation. The plant population and the growth was also good when compared to dibbling. In dibbling un even plant population with excess in some places and inadequate in some places. Seed cum fertilizer drill is easy to operate and reduces the time of fertilizer application and sowing It is easy to attach the seed drill with the conventional tractor. It saves time and labour. The drudgery of labour is reduced

OFT 6

- 1) 2) Title of Technology Assessed: Assessment of chilli varieties for yield and marketability as spice
- Problem Definition:

Farmers are predominantly cultivating local varieties

They are poor yielders

They have less market value

3) Details of technologies selected for assessment

Technologies assessed	Details of technologies assessed
Technological option 1:	К1
(Farmers Practice)	
Technological option 2:	Baydiki
Technological option 3:	G4

- 4) Source of technology: TNAU
- 5) Production system and thematic area: Varietal evaluation
- 6) Performance of the Technology with performance indicators:

Village Kanjama naikkenpatti	Farmers practice K1					Technological option 1 Baydiki			Technological option 2 G4			
Farmers' Name	Plant height (cm)	No.of fruits/ plant	Fruit length (cm)	Dry fruit yield (q/ha)	Plant height (cm)	No.of fruits/ plant	Fruit length (cm)	Dry fruit yield (q/ha)	Plant height (cm)	No.of fruits/pl ant	Fruit length (cm)	Dry fruit yield (q/ha)
K. Aandi	90	98	9.5 2	5.2	105	120	9.6 3	2.6	105	98	10.4	28.8
N. Periyasamy	97	100	8.5	23.5	110 13	7	10.6	35.4	100 11	2	10.8	32.2
A. Chidambaram	95	94	8.3 2	2.5	100	122	9.6 2	9.8	98	132	10.2	28.6
S. Seenivasan	98	87	7.7	20.8	105 13	0	10.4	31.2	102 12	4	9.4	30.4
P. Rajendiran	97	97	8.5	24.2	115 11	8	10.8	33.4	110 10	4	9.8	32.8
MEAN	95.4	95	8.5	23.2	107	125	10.2	32.5	103	114	10.1	30.6

Economics

Village Kanjama naikkenpatti		Farmers pr K1	actice -		Tee	chnological Bayd			Te	echnological G4	•	
Farmers' Name	Gross return (Rs./ha)	Cost of cultivati on (Rs/ha)	Net return (Rs./ ha)	B:C Ratio	Gross return (Rs./ha)	Cost of cultivati on (Rs/ha)	Net return (Rs./ha)	B:C Ratio	Gross return (Rs./ha)	Cost of cultivati on (Rs/ha)	Net return (Rs./ ha)	B:C Ratio
K. Aandi	70560 30	200 40) 360	2.34	97800	32500 6	5 300	3.01	83520 3 ⁻	I 000 52	520	2.69
N. Periyasamy	65800 32	2 400 33	3 400	2.03	106200 3	1 500 74	4 700	3.37	93380 3 ⁻	1 500 61	880	2.96
A.Chidambaram	63000 3	I 000 32	2 000	2.03	89400	33000 56	6 400	2.71	82940 32	2 000 50	940	2.59
S. Seenivasan	58240 3	3 500 24	740	1.74	93600	32500 61	100	2.88	88160 32	2 000 56	160	2.76
P. Rajendiran	67760 30	000 31	760	2.26	100200 32	2 500 61	7 700	3.08	95120 30) 500 64	620	3.12
MEAN	65072 31	420 33	652	2.03	97440	32400 64	4 375	2.99	88624 3	I 400 55	375	2.75

7) Feedback, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques Inference

At Virudhunagar, three chilly varieties were assessed for their performance under rainfed condition The results are as follows:

The plant height recorded were 95.4 cm, 107 cm and 103 cm respectively in K1, Baidyki and G4.

The dry fruit yield was 23.2 q/ha, 32.5 q/ha and 30.6 q/ha in K1, Baidyki and G4 respectively.

The increase in yield was 40 % and 6 % in baidyki over K1 and G4 respectively.

The fruit length was higher in Baidyki folloewd by G4 and K1

Both G4 and baydki were preferred over K1

Baidyki is rich in capcisin content and colour and has good market value.

As chillies exporters are available in Virudhunagar, market tie up can be easily done with farmers and exporters.

The exporters feel that lot of admixtures in Baidyki causes problem while extraction and affects the quality.

Hence, farmers need be taught on the grading and importance of pure baidyki supply to sustain good pricing and better marketing. For transport alone a single exporter spends 18 lakhs to mobilise Baidyki from Andhra and Karnataka. If locally produced, it will be much useful.

If sufficient raw material is not available, there is every danger to shift the mills to Andhra as there is short supply of these varieties.

8) Final recommendation for micro level situation

Byadgi was given high yield and better market price when compared to G4 and local variety.

9) Constraints identified and feedback for research Byadgi is very much useful in extraction of capsaicin. If the farmers sell the produce to extraction units, they will get higher price than the market. Development of high capsicin content chillies which is drought tolerant too is required. Varieties with deep red colour are also preferred for extraction of natural dye after extraction of capsaicin and seeds.
10) Process of farmers participation and their reaction

Farmers were helpful in recording biometric observation.

They were satisfied with new varieties assessed. High appealing colour of pod gives better price in the market.

Hence, Byadgi is most preferred in the market.

Varieties with deep red colour is also preferred by the exporters for extraction of natural dye after extraction of capsaicin and seeds

OFT 7

1) Title of the technology Assessed: Management of posrpartum anestrum in crossbred cows

2) Problem Definition:

Animals not coming to estrum after parturition leading to prolonged intercalving period 20% of the animal population has prolonged inter calving period in the area of operation Post partum anestrum in cross bred cows leads to prolonged intercalving period there by increasing the maintenance cost of animals.

3) Details of technologies selected for assessment / refinement

Technology option 1 : Farmers' method : Conventional feeding Technology option 2 : Deworming and Supplementation of TANUVAS area specific mineral mixture

- 4) Source of technology: TANUVAS
- 5) Production system and thematic area: Milch animals improvement
- 6) Performance of the Technology with performance indicators:

Farmer name and Village	Convention	al method	Deworming an	ogical option 1 d supplementation of ic mineral mixture
	Milk yield (litres/day)	Calving cycle interval (months)	Milk yield (litres/day)	Calving cycle interval (months)
Vallimayil, Palayampatti	15	18	15.5	15
V.Shanmugam, Palayampatti	8	18	8.5	15
S.Thamilarasi,Aruppukottai 10		18	10.5	15
M.Velankannan,Maraneri 1	3	18	13.5	15
S.Rajeswari,Aruppukottai 13		18	13.3	15
R.Sandhiveeran, Sokkalingapuram	7	18	7.5	15
P.Ramuthai,Thiruchuli 9		18	9.5	15
YO.Mosa,Aruppukottai 14		18	14.4	15
T.Ramesh, Thiruchuli	9	18	9.5	15
J.Ponnuthai,Thiruchuli 10		18	10.2	15
V.Pachiammal,Virudhunagar 13		18	13.5	15
S.Valli,Thottiankulam 14		18	14.3	15
Salammal,Thiruchuli 10		18	10.5	15
G.Kasturi, Thiruchuli	12	18	12.4	15
S.Alagu,Thiruchuli 15		18	15.5	15
P.Kumarandi,Puthu colony	12	18	12.5	15
R.Senniammal,Thiruchuli 13		18	13.3	15
V.Veeran, Thiruchuli 14		18	14.5	15
Pandiammal,Kovilankulam 1	5	18	15.5	15
Dhanalakshmi,Aruppukottai 12		18	12.5	15

V.Panchavarrnam,Sokkalingampatti 12		18	12.5	15
S.Ashokkumar,Sokkalingampatti 12		18	12.4	15
D.Subathira,Virudhunagar 1	2	18	12.3	15
K.Thanam, Virudhunagar	13	18	13.5	15
G.Palaniammal, Sokkalingampatti	15	18	15.5	15
Mean	12.08	18	12.52	15

Farmer name and Village		Conventional r	nethod	
	Gross return (Rs/day)	Cost (Rs/day)	Net return (Rs/day)	C:B Ratio
Vallimayil, Palayampatti	300	200	100	1.5
V.Shanmugam, Palayampatti	160	100	60	1.6
S.Thamilarasi,Aruppukottai 20	0	100	100	2
M.Velankannan,Maraneri 2	60	120	140	2.16
S.Rajeswari,Aruppukottai 26	0	120	140	2.16
R.Sandhiveeran, Sokkalingapuram	140	70	70	2
P.Ramuthai,Thiruchuli 1	80	80	100	2.25
YO.Mosa,Aruppukottai 2	80	100	180	2.8
T.Ramesh, Thiruchuli	180	80	100	2.25
J.Ponnuthai,Thiruchuli 20	0	100	100	2
V.Pachiammal,Virudhunagar 26	0	100	160	2.6
S.Valli,Thottiankulam 28	0	120	160	2.3
Salammal,Thiruchuli 2	00	120	180	1.6
G.Kasturi, Thiruchuli	240	130	110	1.84
S.Alagu,Thiruchuli 3	00	200	100	1.5
P.Kumarandi,Puthu colony	240	120	120	2
R.Senniammal,Thiruchuli 2	60	120	140	2.16
V.Veeran,Thiruchuli 2	80	140	140	2
Pandiammal,Kovilankulam 3	00	200	100	1.5
Dhanalakshmi,Aruppukottai 24	0	150	90	1.6
V.Panchavarrnam,Sokkalingampatti 2	40	120	120	2
S.Ashokkumar,Sokkalingampatti 2	40	120	120	2
D.Subathira,Virudhunagar 2	40	120	120	2
K.Thanam, Virudhunagar	260	140	120	1.85
G.Palaniammal, Sokkalingampatti	280	140	140	2
Mean	240.8 12	4.4 1	20.4	1.98

Farmer name and Village	Deworming an	Technological o d supplementation of a		al mixture
	Gross return (Rs/day)	Cost (Rs/day)	Net return (Rs/day)	C:B Ratio
Vallimayil, Palayampatti	310	200	110	1.55
V.Shanmugam, Palayampatti	170	100	70	1.7
S.Thamilarasi,Aruppukottai 21	0	100	110	2.1
M.Velankannan,Maraneri 27	0	120	150	2.25
S.Rajeswari,Aruppukottai 1	50	120	30	1.25
R.Sandhiveeran, Sokkalingapuram	190	70	120	2.71
P.Ramuthai,Thiruchuli 29	0	80	210	3.6
YO.Mosa,Aruppukottai 19	0	100	90	1.9
T.Ramesh, Thiruchuli	205	80	125	2.56
J.Ponnuthai,Thiruchuli 27	0	100	170	2.7
V.Pachiammal,Virudhunagar 2	86	100	186	2.86
S.Valli,Thottiankulam 2	10	120	90	1.75
Salammal,Thiruchuli 24	8	120	128	2.06
G.Kasturi, Thiruchuli	310	130	180	2.38
S.Alagu,Thiruchuli 25	0	200	150	1.25
P.Kumarandi,Puthu colony	266	120	146	2.21
R.Senniammal, Thiruchuli 29	0	120	170	2.41
V.Veeran,Thiruchuli 31	0	140	170	2.21
Pandiammal,Kovilankulam 25	0	200	150	1.25
Dhanalakshmi,Aruppukottai 25	0	150	100	1.66
V.Panchavarrnam,Sokkalingampatti 24	8	120	128	1.93
S.Ashokkumar,Sokkalingampatti 24	6	120	126	2.05
D.Subathira,Virudhunagar 24	6	120	126	2.05
K.Thanam, Virudhunagar	270	140	130	2.0
G.Palaniammal, Sokkalingampatti	310	140	170	2.21
Mean	249.8 1	24.4	133.4	2.104

7) Feed back, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques

The area specific mineral mixture increases the milk yield and reduced the calving cycle from 18 months to 15 months.

The continuous feeding of mineral mixture may increase the milk yield up to 10%.

8) Final recommendation for micro level situation:

The continuous use of area specific mineral mixture in conjunction with regular deworming improves the health and fertility status of animals and reduces the inter calving period. There is increase the milk yield and reduced dry periods.

9) Constraints identified and feedback for research

Farmers are not having awareness about area specific mineral mixture.

They are reluctant to use these mineral mixtures.

10) Process of farmers participation and their reaction.

Farmers realized the benefit of mineral mixture in terms of its higher milk yield over conventional practices

Farmers gained knowledge about area specific mineral mixture.

Training on creating awareness on the usage of mineral mixture are highly essential to improve the milk production.

OFT 8

- 1) Title of the technology Assessed: Control of Ranikhet disease in desi chicken
- 2) Problem Definition:
 - Ranikhet disease is disastrous in poultry
 - Mortality due to Ranikhet disease
- 3) Details of technologies selected for assessment / refinement

Technologies Assessed	Details of technologies assessed
Technological Option 1	No vaccination
(Farmer's practice)	
Technological Option 2	Lasota vaccine eye drops on 7th and 14th day
	RDVK– Subcutaneous on 8th and 16th week
Technological Option 3	Oral pellet Ranikhet vaccine on 7th and 14th day
	RDVK – Subcutaneous on 8th and 16th week

4) Source of technology

TANUVAS

5) Production system and thematic area : Poultry disease management (Animal Science)

:

6) Performance of the Technology with performance indicators

Village Name	(Far	ological opti mers praction vaccination	ce)	Lasota vac a RDVK– Sut	ological opt ccine eye dro ind 14 th day ocutaneous 16 th week	ops on 7 th	Technological option 3 Oral pellet Ranikhet vaccine on 7 th and 14 th day RDVK – Subcutaneous on 8 th and 16 th week			
	No. of birds	Mortality of birds (No.)	Mortality pattern (%)	No. of birds	Mortality of birds (No.)	Mortality pattern (%)	No. of birds	Mortality of birds (No.)	Mortality pattern (%)	
Kuppambatti 8	0	35	43.8	247	12	4.9	353	0	0	
Ondipuli Naickanur	94	23	31.1	303	25	8.3	235	0	0	
Sangaralingapuram 6	0	0 28		250	35	14.0	187	0	0	
Mudukkangulam 6	6	14	21.2	200	21	10.5	225	0	0	
Mean -		25	35.7	-	23	9.4	-	0	0	

7. Feed back, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques

In non vaccinated lot the mortality was upto 35%. In Lasoto eye drop vaccinated lot the mortality was 9.4%.

- No mortality noticed in oral pellet vaccinated chicks.
- Farmers felt easy to adopt oral pellet vaccination.
- The mortality was not noticed in any farm / farmer holding.
- Birds consumed the vaccine pellets without any inhibition.

8. Final recommendation for micro level situation

Controlling of ranikhet disease in poultry either through Lasota vaccine eye drops on 7th and 14th day or RDVK– Subcutaneous on 8th and 16th week or oral pellet Ranikhet vaccine on 7th and 14th day is found to reduce the mortality of poultry. Oral pellet vaccination is easy to adopt and has good effect in poultry.

No mortality was observed in oral pellet vaccinated fowls.

9. Constraints identified and feedback for research

Application of Lasota vaccine eye drops on 7th and 14th day or

RDVK– Subcutaneous on 8th and 16th week are found difficult to practice by the farmers themselves.

Oral pellet is easy to adopt. If this can be fortified with multi vitamine mixture, then both nutrition and vaccination will be taken care at one stroke.

10. Process of farmers participation and their reaction.

Management of ranikhet disease in poultry by Lasota vaccine eye drops on 7th and 14th day or RDVK– Subcutaneous on 8th and 16th week or oral pellet Ranikhet vaccine on 7th and 14th day is highly helpful to the poultry farmers to reduce the mortality completely.

Farmers felt that oral pellet Ranikhet vaccine on 7th and 14th day is highly practical to adopt themselves in controlling the disease.

4.D1. Results of Technologies Refined: Nil

Results of	Un Farm T	ligi								
Crop/ enterprise	Farming situation	Problem definition	Title of OFT	No. of trials	Technology refined	Parameters of refined t	Data on the parameter	Results of refinement	Feedback from the farmer	Details of refinement done
12		3	4	5	6	7	8	9 10		11

Results of On Farm Trial

Contd.

Conta					
Technology Refined	Source of Technology for Technology Option1 / Justification for modification of assessed Technology Option 1	Production	Please give the unit (kg/ha, t/ha, lit/animal, nuts/palm, nuts/palm/year)	Net Return (Profit) in Rs. / unit	BC Ratio
13		14	15	16	17
Technology Option 1 (best performing Technology Option in assessment)					
Technology Option 2 (Modification over Technology Option 1)					
Technology Option 3 (Another Modification over Technology Option 1)					

4.D.2. Details of each On Farm Trial for refinement to be furnished in the following format separately as per the proforma below

- 1. Title of Technology refined
- 2 Problem Definition
- 3 Details of technologies selected for refinement
- 4 S ource of technology
- 5 Produ ction system and thematic area
- 6 Performance of the Technology with performance indicators
- 7. Feedback, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques
- 8 Final recommendation for micro level situation
- 9 Constraints identified and feedback for research
- 10 Process of farmers participation and their reaction

PART V - FRONTLINE DEMONSTRATIONS

5.A. Summary of FLDs implemented during 2010-11

SI. No.	Category	Farming Situation	Season and Year	Crop	Variety/ breed	Hybrid	Thematic area	Technology Demonstrated	Area	a (ha)		No. of farme demonstrati		Reasons for shortfall in achievement
-									Proposed	Actual	SC/ST	Others	Total	
Oi	lseeds	Irrigated	Rabi 2010-11	Sesame T	MV 7		ICM	Integrated Crop Managemnt in Sesamum	5	6.8	3	14	17	
		Rainfed	Rabi 2010-11	Groundnut			Mechanised sowing	Mechanised sowing in Groundnut	5	5	1	9	10	
		Rainfed	Rabi 2010-11	Castor		YRCH 1	ICM	Introduction of castor hybrid YRCH 1	5	5	2	10	12	
		Rainfed	Rabi 2010-11	Sunflower		KBSH 41	ICM	Popularisaton of Sunflower hybrid KBSH 1	5	5	10	2	12	
Ρ	ulses	Rainfed	Rabi 2010-11	Blackgram Va	mban (Bg) 3		Production technology	Popularisation of Vamban 3 Blackgram	5	5	2	8	10	
		Rainfed	Rabi 2010-11	Greengram Va	mban (gg) 3		Production technology	Popularisation o f Vamban 3 greengram	5	5	1	11	12	
	Cereals	Irrigated Kha	rif 2010	Rice Co	(R)H 3		Hybrid introduction	Introduction of Co(R)H 3 rice hybrid uner SRI	5	5	6	6	12	
		Rainfed K	harif 2010	Rice	Anna		Drought tolerant rice variety introduction	Introduction of Semi dry rice variety Anna	5	2	3	7	10	Seed availability i s only for 2 ha hence, proposed to continue
		Irrigated Kha	rif 2010	Rice Co	49		Farm machanisation in rice	Popularisation of fully mechanized cultivation of rice	2	2	1	6	7	
	Millets	Rainfed R	abi 2010-11	Bajra Co	(Cu) 9		Variety introduction	Introduction of bajra variety Co(Cu) 9	5	5.2	2	11	13	
		Rainfed R	abi 2010-11	Kudiraivali Co	2		Variety introduction	Popularisation Kudiraivali variety Co 2	5	5.6	2	12	14	
	Vegetable							,						
	Flowers													
											-			
	Ornamental													
	Fruit	Irrigated		Mango	Alfanso		Horticulture	High d ensity planting in Mango	2	2	1	9	10	

	Dnion Co	Varietal	Popularisation of Co(5)	2	2	1	4	5	
		evaluation	Onion						
	Dnion A K	Varietal evaluation	Populaisation of Ar ka kalyan Bellary Onion	2	2	2	3	5	
Co(CN) 4 + Co 1	Cumbu na pier iybrid gra ss + Desmanthus	Co(CN) Hybrid 4 + Co 1 popularisation	Popularisation o f Co(CN) 4 Cumbu Napier hy brid g rass + legume fo dder desmanthus	20 u nits of 10 cents each	20 units of 10 cents each	5	15	20	
iG)	Guinea grass C 3	Variety introduction	Introduction of Co(GG) 3 Guinea grass	10 u nits of 10 cents each	10 units of 10 cents each	3	9	12	
	C	Poultry	Popularisation of CARI Aseel backyard poultry	20 units	20 units	7	33	40	
		04	Dopulariaatien e	250	250	5	20	25	
		Goat	Popularisation o f Mineral sallt lick cake	250 Goats	250 Goats	5	20	25	
						<u> </u>			

	Mussels												
	Omemontel												
	Ornamental												
	fishes												
	Oyster mushroom												
	Button mushroom												
	Vermicompost												
	vernicomposi												
	Sericulture												
	Apiculture												
	Implements												
Othe	re (ceocify)	20	10-11	Chaff cutter		Chaff cutter	Popularisation of Chaff	25	3	32	103	135	Will be
Othe	rs (specify)	20	10-11			popularisation	cutter	20	5	52	103	130	continued in
	Farm Machinery												2011-12
		20	10-11	Homestead		Poultry production	Homestead incubator for	25	1	4	21	25	Will be
				incubator			desi egg hatching						continued in 2011-12
		1						1					

5.A. 1. Soil fertility status of FLDs plots during 2010-11

SI.		Farming Situation	Season and	Crop	Variety/	Hybrid	Thematic area	Technology	Season	Statu	is of soil	Previous crop
۷o.	0 7		Year		breed	-		Demonstrated		ΝΡ	K	grown
Oils		-		Sesame TMV	7			Crop Management in Sesamum	Rabi 2010- 11	LM	H	Maize
		Rainfed	Rabi 2010-11	Groundnut			Mechanised sowing		Rabi 2010- 11	LM	H	Blackgram
		Irrigated	Rabi 2010-11	Castor		YRCH 1	ICM		Rabi 2010- 11	LM	Η	Redgram
		Rainfed	Rabi 2010-11	Sunflower		KBSH 41		pularisaton of Sunflower hybrid KBSH 1	Rabi 2010- 11	LM	H	Maize
	Pulses	Rainfed	Rabi 2010-11	Blackgram VB	N(Bg) 3		Production technology	Popularisatio n of VBN(BG) 3 Blackgram	Rabi 2010- 11	LM	H	Maize
		Rainfed	Rabi 2010-11	Greengram VE	BN(Gg) 3		Production technology		Rabi 2010- 11	LM	H	Cotton
	Cereals	Irrigated	Kharif 2010	Rice	Co(R) H 3		Hybrid introduction	Introduction	Kharif 2010	LM	Η	Blackgram
		Rainfed I	K harif 2010	Rice Ann	а		Drought tolerant rice variety introduction	Introduction	Kharif 2010	LM	H	Fallow
		Irrigated	Kharif 2010	Rice	Co 49		Farm machanisation in rice		Kharif 2010	LM	H	Blackgran
ſ	Millets	Rainfed I	Rabi 2010-11	Bajra Co	(Cu) 9		Variety introduction	Introduction	Rabi 20 10- 11	LM	H	Sorghum
		Rainfed I	Rabi 2010-11	Kudiraivali Co	2		Variety introduction	Popularisa	Rabi 20 10- 11	LM	H	Maize
	Vegetables							<u>~</u>				
	Flowers											
(Ornamental											

Fruit	Irrigated		Mango	Alfonso		Horticulture	Introduction of bajra variety Co(Cu) 9 Popularisa tion Kudiraivali variety Co	L		М	H	Fallow
Spices and condiments	Irrigated		Onion	Co 5		Varietal evaluation	2 Popularisatio n of Co(5) Onion	L		М	H	Chilli
	irrigated		Onion	Nasik red	Va	rietal evaluation	Populaisation of N asik redBellary Onion			М	Η	Chilli
Comm ercial												
Medicinal and aromatic												
Fodder	Irrigated	Kharif 2010	Cumbu napier hybrid grass + Desmanth us	Co(CN) 4 + Co 1	Hybrid popularisation	Popularisa tion o f Co(CN) 4 Cumbu Napier hybrid grass + legume fodder desmanth us	Kharif 2010	LM		Н	Maize
	Irrigated	Summer 2011	Guinea grass	Co(GG) 3		Variety introduction		Summer 2011	LM		Н	Maize
Plantation												
Fi bre												

5.B. Results of Frontline Demonstrations

5.B.1. Crops

5.B.1. Cr												-				-			
	Name of the			Far min	No.	Ar		Yiel	d (q/	/ha)	%		*Econo ionstrati		/ha)	*Ec	onomic (Rs.	s of che /ha)	eck
Crop	technolo gy demonstr ated	Vari ety	Hybrid	g situ atio n	of De mo.	ea (h a))em		Che ck	% Incre ase	Gro ss Cos t	Gro ss Ret urn	Net Ret urn	** BC R	Gro ss Cos t	Gro ss Ret urn	Net Ret urn	** B C R
Ollsee ds Ses ame (Rab i 201 0- 11)	Integrate d Crop Manage mnt in Sesamu m	TMV 7	Irrig	ate d	10 5		H 7 3	L 5.3	A 6 3	4.2 3	3. 3	490 0	252 00	203 00	5.1	420 0	210 00	168 00	5
Gro und nut (Rab i 201 0- 11)	Mech anise d sowin g i n Grou ndnut	TMV 7	Ra	i nfe d	10 5		1 0 3	8 7	9 5	6.1 3	5. 8	205 80	618 00	412 00	3.0	193 00	366 00	173 00	1. 89
Cast or (Rab i 201 0- 11)	Introducti on of castor hybrid YRCH 1		YR CH 1	Irrig ate d	12 5		1 9 5	1 7 5	1 8 5	10. 5	43	897 0	557 50	467 80	6. 21	950 0	423 00	328 00	4. 45
Sunf lowe r (Rab i 201 0- 11)	Popularis aton of Sunflowe r hybrid KBSH 1		KB SH 41	Rai nfe d	12 5		1 6 5	1 5	1 6 1	14. 82	9.0	722 6	193 20	120 94	2.6 7	719 2	177 80	105 88	2. 47
Pulses Blackgr am (Popularis ation of Vamban 3 Blackgra m	Vam ban (Bg) 3	Ra	i nfe d	5 10		7 9	6 2	7 0 5	5.8 2	1. 6	942 2	252 07	157 85	2.6 8	869 7	184 29	973 2	2. 11
Gre engr am (Rab i 201 0- 11)	Popul arisati on o f Vamb an 3 green gram	Vam ban (Gg) 3	Ra	i nfe d	5 12		7 4	6 8	7 1	6.1 1	7. 0	985 1	271 07	172 55	2.7 5	980 4	232 56	134 52	2. 37

Cereals	Introducti		Irrig																
Rice (Kharif 2010)	on of Co(R)H 3 rice hybrid uner SRI	Co(R)H 3		ate d	10 4		7 2	6 5	6 9 4	5.4 3	2	200 00	694 00	552 00	3.4 7	200 00	540 00	340 00	2. 84
Rice (Kharif 2010)	Introducti on of Semi dry rice variety Anna	Ann a	Ra	i nfe d	10 2		4 3 5	3 4 .9	3 9 2	33. 6	16.7	198 20	408 67	210 47	2.0 6	195 21	335 82	140 61	1. 72
Rice (Kharif 2010)	Popularis ation of fully mechani zed cultivatio n of rice	Co 49	Irrig	ate d	52		3 6	3 0	3 3	16. 2	50.9	190 00	500 00	310 00	2.6 1	150 00	300 00	150 00	2
Millets Bajra (Rabi 2010- 11)	Introducti on of bajra variety Co(Cu) 9	Co(Cu) 9	Ra	i nfe d	10 5		2 5 7	2 1 3	2 3 5	15. 3	34.8	450 0	235 00	190 00	5.2	400 0	153 00	113 00	3. 82
Kudiraiv ali (Rabi 2010- 11)	Popul arisati on Kudir aivali variet y Co 2	Co 2	Ra	i nfe d	10 5		2 5 3	1 0 1	1 7 7	9.8 4	4. 6	300 0	177 00	147 00	5.9	300 0	980 0	680 0	3. 2
Vegeta bles																			
Flowers																			
Orname ntal																			
Fruit Mango	High density planting in Mango	Alfa nso	Irrig	ate d	10	2				Tria I is in pro gre ss									

Spices and condim ents Onion	Popularis ation of Co(5) Onion	Co(5)	Irrig	ate d	5 2		4 1 0 0	3 8 5	3 9 7 5	26. 00	35 30	000	100 000	700 00	3.3 2	350 00	820 00	470 00	2. 34
	Popul aisati on o f Nasik red Bellar y	Nasi k red	Ra	i nfe d	5 2		1 5 5	1 3 7	1 4 6	115 2	2	350 00	175 200	140 200	5.0 0	390 000	138 000	990 000	3. 05
Onion Comme	Ónion																		
rcial																			
Medicin																			
al and																			
aromati																			
С																			
Fodder Cumbu napier hybrid grass + Desma nthus (Kharif, 2010)	Popul arisati on o f Co(C N) 4 Cumb u Napie r hybrid grass + legum e fodde r desm anthu s		Co(C N) 4 + Co 1	Irrig ate d	20	20 uni ts of 10 ce nts ea ch	3 0 2	2 0 8 8	2 5 4 5	213 1	19.4	624 44	143 553	811 09	2.3 0	509 78	958 88	449 10	1. 88
Guinea grass (Summ er 2011)	Introd uction of Co(G G) 3 Guine a grass	Co(GG) 3	Irrig	ate d	5	5 uni ts of 5 ce nts ea ch	3 4 0 0	2 9 0	3 1 8 0	213 0	49	152 520	397 500	244 980	2.6 1	150 800	266 250	115 450	1. 77
Plantati on																			
Fibre																			

Others										
(pl.spec										
ify)										

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone.
 ** BCR= GROSS RETURN/GROSS COST
 H – Highest Yield, L – Lowest Yield A – Average Yield

Data on additional parameters other than yield (viz., reduction of percentage in weed/pest/ diseases etc.)

· · ·	Data on other parameters in relation to te	
Parameter with unit	Demo	Check
1. Sesame		
Plant height (cm)	99.1	73.6
No.of pods/plant	33	24
Pod length (cm)	2.89	2.2
1000 grain weight	3.96	2.78
2. Groundnut		
Germination (%)	89	73
Population/m ² 33		26
No.of filled pods/plant	18	12
3. Castor		
No of capsules per plant	749	615
100 seed weight	26.5	18.4
Plant height (cm)	151	135
		100
4. Sunflower		
Plant height (cm)	140	135.8
Head diameter(cm)	16.5	14.3
Test weight (g)	5.72	5.6
5. Blackgram		
Population/m ²	31 29	
No.of pods/plant	32	28
No. of seeds/pod	8	7
Test weight (g)	4.4	3.9
6 Croop gram		
6. Green gram Plant height (cm)	62	67
No. of clusters / plant	12	10
Test weight (g)	3.4	3.2
Test weight (g)	5.4	5.2
7. Rice (Co(R)H 3)		
No.of productive tillers/m ²	47 36	
Panicle / m ²	236 2	02
1000 grain weight (g)	22.7	19
8. Rice (Anna)		
Total tillers/m ²	277 2	56
Productive tillers/m ² 25	3	224
No. of grains/panicle	121	102
Test weight (g) 23.	4	26.3
9. Rice (Co 49)		
Total tillers/m ²	233 2	12
Productive tillers/m ² 22	0	197
No. of grains/panicle 10	8	92.6

Test weight (g)	25.6	21.3
10. Bajra		
Plant height (cm)	189	133
No.of tillers	6	4
Length of earhead (cm)	33	16.4
Breadth of earhead (cm)	8.1	4.3
1000 grain weght (g) 8.	9	5.3
11. Kudiraivali		
No.of earheads/m ² 36		17.8
Panicle length (cm)	22	18.3
Test weight (g)	3	2.1
12. Mango		
Plant height (cm)	35	24
13. Onion (Co 5)		
Plant height (cm)	30	26
No of tillers per plant	9.0	6.0
No of bulbs per plant	7.6	5.0
14. Onion (Nasik red)		
Plant height (cm)	35	22
No of tillers per plant	2.2	1.5
No of bulbs per plant	1.4	1.0
15. Cumbu napier hybrid grass + Desmanthus		
Plant height (cm)	185.3	168.5
No. of tillers/clump	27	20

5.B.2. Livestock and related enterprises

Type of	Name of the		No.	No.		Yield (q/ha)			%		*Econo		ınit)	*Ec	onomic: (Rs./	s of che unit)	ck
livestoc k	technolog y demonstr ated	Bre ed	of De mo	of Unit s		Demo		Che ck if any	Increa se	Gro ss Cos t	Gros s Retu rn	Net Retu rn	** BC R	Gro ss Cos t	Gros s Retu rn	Net Retu rn	** BC R
					Н	L	Α										
Dairy																	
Poultry (2010-	Popularis ation of ackyard	CA RI Ase	40 4	0	76 (Tot al egg	62 (Tot al egg	70 (Tot al egg	39 Tota I egg	51	132 0	350 0	198 0	3.0 2	195 0	690	126 0	2.8 4
11)	poultry	el b			s laid)	s laid)	s laid)	s laid)									
Rabbitr																	
у																	
Pigerry																	
Goat (2010- 110	Popularis ation of Mineral sallt lick cake in Goat nutrition		250 Goa ts	250 Goa ts	400 ml/d ay	300 ml/d ay	350 ml/d ay	200 ml/d ay	43	480 0	160 00	112 00	3.3 3	500 0	110 00	600 0	2.2 0
Ducker y																	
Others (pl.spec ify)																	

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone. ** BCR= GROSS RETURN/GROSS COST

Data on additional parameters other than yield (viz., reduction of percentage diseases, increase in conceiving rate, inter-calving period etc.)

	Data on other parameters in relation to tec	hnology demonstrated
Parameter with unit	Demo	Check if any
Poultry		
Weight gain	3.330 kg after 6 months	2.54 kg after 6 months
Total eggs laid	70	39
Goat		
Inter calving period (months)		
Before treatment	6.4	7 6
After treatment	5.4	7.5
No. of calves/calving		
Before treatment	1.8	10
After treatment	2.8	1.0
Initial weight (kg) 10.	5	10.0
Final Weight (Kg)	12.5	10.0

5.B.3. Fisheries

Turno of	Name of the	Bree	No. of	Unit		Yie	ld (q	/ha)	%	dem	*Econor onstration (Rs./	n Rs./uni	t) or			s of cheo r (Rs./m2	
Type of Breed	technology demonstrat ed	d	Dem o	s/ Area (m²)	C	Dem	0	Chec k if any	Increa se	Gros s Cost	Gros s Retur n	Net Retur n	** BC R	Gros s Cost	Gros s Retur n	Net Retur n	** BC R
					Н	L	А										
Common																	
carps																	
Mussels																	
Ornamen																	
tal fishes																	
Others																	
(pl.specif																	
у)																	

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone.

** BCR= GROSS RETURN/GROSS COST

H-High L-Low, A-Average

Data on additional parameters other than yield (viz., reduction of percentage diseases, effective use of land etc.)

	Data on other parameters in relation	on to technology demonstrated
Parameter with unit	Demo	Check if any

5.B.4. Other enterprises

Estavá	Name of the	Variet	No.	Unit s/		Yiel	d (q	/ha)	%	demo	*Econor onstratior (Rs./	n (Rs./un	it) or		conomics s./unit) o		
Enterprise	technology demonstra ted	y/ speci es	of Dem o	Are a {m²}	C)em	0	Che ck if any	Increa se	Gro ss Cost	Gros s Retu rn	Net Retu rn	** BC R	Gro ss Cost	Gros s Retu rn	Net Retu rn	** BC R
					Н	L	А										
Oyster																	
mushroom																	
Button																	
mushroom																	
Vermicomp																	
ost																	
Sericulture																	
Apiculture																	
Others																	
(pl.specify)																	

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone.

** BCR= GROSS RETURN/GROSS COST

H-High L-Low, A-Average

Data on additional parameters other than yield (viz., additional income realized, employment generation, quantum of farm resources recycled etc.)

Data on other parameters in relation to technology demonstrated											
Parameter with unit	Demo	Local									

5.B.5. Farm implements and machinery

Name of	Cost of the	Name of the technolog	No.	Area cover ed\	requir	Labour requirement in Mandays		Savin gs in labou	den	*Econor nonstrati		na)	*Economics of check (Rs./ha)				
the		y demonstra ted	of De mo	under demo in ha	De mo	Che ck	sav e	r (Rs./h a)	Gro ss cost	Gros s Retur n	Net Retur n	** BC R	Gro ss Cost	Gros s Retur n	Net Retur n	** BC R	
Chaff cutter	12580	Popularisa tion of Chaff cutter	3		70	105	50	3500	750 24	2625 00	1874 76	3.5 0	624 44	1750 00	1125 56	2.8 0	
Homest ead incubato	30000	Homestea d incubator for desi egg	1		1	1	-	-	500 2	4 50	1950	4.9	500 1	8 75	1375	3.7 5	
ſ		hatching															

The hatching percentage is 75% in normal method and 98% in incubator

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone. Data on additional parameters other than labour saved (viz., reduction in drudgery, time etc.)

Data on other parameters in relation to technology demonstrated											
Parameter with unit	Demo	Local									
Homestead incubator											
Fully grown hatched chicks %	98	75									
Average chicks rate	50 per pair	50 per pair									
Health of chick	Growth was good & Healthy	One or two chicks growth was affected due to improper turning under the wings									

5.B.6. Cotton

5.B.6.1.Summary of demonstrations conducted under FLD cotton

SI. No.	Category	Category Technology Demonstrated		Variety Hybrid		Area (ha)		o. of farme emonstratio	Reasons for shortfall in achievement	
						Proposed A	ctual S	SC/S T	Others	Total	
Р	roduction Technology	ICM S	VPR- 4 KC 3	Bunny BT	Rabi 2010- 11	20 2	0	14	36	50	Nil
IP	М										
Fa	rm Implements										

5.B.6.2 Production technology demonstrations

Performance of demonstrations

Farming situation	Tech nolog	Area (ha)	No.of		Н	Yield (q/ha) % Incr		Econ	omics of c (Rs./		tion	Economics of local check (Rs./ha)					
	y Demo nstrat ed		demo	Variety	y b ri d	Demo	Loc al	eas e	Gross Cost	Gross Return	Net Return	BCR G	iross Cost	Gross Return	Net Return	BC R	
Rainfed I	СМ	6	12	SVPR -4		27.2	21.1	73.0	21198 5	4 329 3	3131	2.56	20675 3	6000 1	5 325	1.70	
Irrigated I	СМ	6	13	SVPR- 4		27.0	20. 8	75.0	2083 7	5400 8	3317 1	2.59	20850 3	5400 1	4 550	1.70	
Rainfed IC	СМ	2	5	KC 3		27.3	20. 6	80.8	20300 4	8 560 2	8260	2.30	20750 3	2500 1	1 750	1.57	
Mean						27.2	20. 8	76. 3	2077 8	5229 9	3152 1	2.48	2075 8	3463 3	1387 5	1.6 6	

Performance of Bt hybrids, Desi hybrids, non-Bt hybrids and Varieties in Front Line Demonstrations in cotton during 2010-11

/ha)			
(Rs./ha)			
Net BC			
Retu R			
rn			
1017 5.3			
50 8			
1003			
19 5 .5			
5			

HXB Hybrids					 				
HXH Hybrids									
Herbaci um Varietie s									
Hirsutu m Varietie s									
Arbore um Varietie s									

5.B.6.3 Integrated pest management demonstrations : Nil

Farmi ng situat	Vari ety	Hyb rid	No. of bloc	Tot al No.	Ar ea				Seed Cotton Yield (q/ha)				omics c Instratio	of on (Rs./I	na)	Economics of local check (Rs./ha)			
ion			ks	of De mo.	(ha)	IP M	N on IP M	% Chan ge	IP M	N on IP M	% Chan ge	Gro ss Cos t	Gro ss Ret urn	Net Ret urn	BC R	Gro ss Cos	Gro ss Ret	Net Ret urn	BC R
								ye			yc						urn		

5.B.6.4 Demonstrations on farm implements: Nil but taken as a component in ICM

Name of the implement	Area (Ha)	No. of Demo.	Name of the technology demonstrated		Labour requirement for operation (mandays./ha)			
				Demo	Local check	% change		
Broad bed furrow former cum seed drill	6 15		ICM	3	20	85		
Total	6	15	ICM	3	20	85		

Extension activity	No. of						
-	Programmes		Participants			SC/ST	
		Male	Female	Total	Male	Female	Total
Consultancy							
Conventions							
Demonstrations 5		20	16	36	5	9	14
Diagnostic surveys	1						
Exhibition							
Farmer study tours							
Farmers Field school							
Field Days	3	95	55	150	-	-	-
Field visits	12						
Gram sabha							
Group discussions	3	45	25	70	-	-	-
Kisan Gosthi							
Kisan Mela							
Training for Extension Functionaries							
Training for farmers	3	40	20	60	12	5	17
Viedo show							
Newspaper coverage	2						
Popular articles	2						
Publication	2						
Radio talks	1						
T.V. Programme							
Others (Pl.specify)							
TOTAL	40	200	116	316	17	14	31

5.B.6.5 Extension Programmes organized in Cotton Demonstration Plots

5.B.6.6Technical Feedback on the demonstrated technologies on all crops / enterprise

S. No	Crop / Enterprise	Name of the technology demonstrated	Feed Back
1 Se	samum	Integrated Crop Management in Sesamum	Variety TMV 7 performed better than local check.
2 Grou	ndnut	Mechanised sowing in Groundnut	Groundnut sowing with broad bed furrow former cum seed drill recorded net income of Rs 54,890/ha and B:C ratio of 3.54. Sowing with tra ctor dra wn see d dr ill ensures pr oper de pth o f sowing, good crop establishment. More area could be covered in less time before the soil moisture gets depleted. The demo plot recorded groundnut pod yield of 17 q/ha compared to 11 q/ha in conventional sowing. The yield increase was 54%. The number of filled pods were 25 in demo compared to 11 in conventional method which caused the difference
3 Ca	stor	Introduction of castor hybrid YRCH 1	YRCH 1 performed better than other castor varieties grown locally. The constraint is farmers are reluctant to grow castor as a pure crop, rather they prefer as border or alley crop.
4 Sun	flower	Popularisaton of Sunflower hybrid KBSH 1	Sunflower hybrid KBSH41 performed better than the check. The seed setting was good and the capitulum size was big. Availability of KBSH 41 is a constraint for large scale adoption.

5 Blak	gram	Popularisation of VBN (Bg) 3 Blackgram	The seeds are bold and yields are
	5		higher.
			Performed better than T9
			The crop growth is vry good and suited
			to rainfed situation.
6 Gree	ngram	Popularisation of VBN (Gg) 3 greengram	The variety was photo-insensitive and
			tolerant to Yellow Mosaic Virus (YMV)
			disease. Pods were comparatively
			bigger in size and seeds were well filled.
			Good pod setting and yield
7 Ri	се	Introduction of Co(R)H 3 rice hybrid uner SRI	The yield recorded was high
8 Ri	се	Introduction of Semi dry rice variety Anna	The variety is suited for semi dry system
			of rice cultivation. Non-lodging type.
			The seed availability is a constraint
9 Ri	се	Popularisation of fully mechanized cultivation of rice	Transplanter is good for planting.
			The no. of seedlings planted per hill is
			more hence, seed rate is more
			compared to SRI.
			The land preparation and condition for
			planting needs much care for planter.
			The tillering is good. Harvestor saves
			time and energy.
10 Ba	jra	Introduction of bajra variety Co(Cu) 9	Co(Cu) 9 had longer ear heads than
	,		check.
			The number of tillers is also very high.
			The ratio of productive tillers to total
			tillers is less.
11	Kudiraivali – Barnyard millet	Popularisation Kudiraivali variety Co 2	Co2 recorded good yield
			Easy to maintain the crop.
			Good market price of Rs 1400-1800/q.
12 Ma	ngo	High density planting in Mango	High density planting accommodates
			more plant population.
			The performance is yet to be assessed.
13 On	ion	Popularisation of Co(5) Onion	Seed propagated onion is easy to adopt
			Saves cost on seed bulb
			The size of the bulbs are large
14 On	ion	Populaisation of Nasik Red Bellary Onion	Good crop establishment
			Larger bulb size
15 Fo	dder grass	Popularisation of Co(CN) 4 Cumbu Napier hybrid	Leaf-stem ratio is high than the check
		grass + legume fodder desmanthus	hybrid and feed is nourished with protein
			by Desmanthus.
16 Gu	inea grass	Introduction of Co(GG) 3 Guinea grass	It is an alternate source for feeding the
			cattle during summer. It is shade
			tolerant and has quick regeneration
			capacity and highly palatable.
17 Ase	el poultry	Popularisation of CARI Aseel backyard poultry	Easily adopted to the new environment
18 G	oat – Nutrition	Popularisation of Mineral sallt lick cake	Lactating ability is high.
19	Chaff cutter	Popularisation of Chaff cutter	Reduction in labour cost. Feeding
			capacity of cattle is increased due to
			small pieces of chaff.
20	Homestead incubator	Homestead incubator for desi egg hatching	Handling is easy.
20	Homestead incubator	Homestead incubator for desi egg hatching	Handling is easy.

5.B.6.7 Farmers' reactions on specific technologies

S. No	Crop / Enterprise	Name of the technology demonstrated	Feed Back
1	Sesamum	Integrated Crop Management in Sesamum	High seed yield due to proper adoption of modern techniques. Shattering is not much.
2	Groundnut	Mechanised sowing in Groundnut	Labour and drudgery reduction. Very

			good pod yield due to maintenance of plant population by proper depth of sowing and good establishment of the
	Castor	Introduction of castor hybrid YRCH 1	crop. High yield due to this hybrid when compared to check hybrid. Damage due to capsule borer is very less.
	Sunflower	Popularisaton of Sunflower hybrid KBSH 1	Expected huge yield was not obtained due to continuous rain during establishment of the crop.
	Blakgram	Popularisation of VBN (Bg) 3 Blackgram	The variety was performed well when compared to the local varieties. The no.of pods/plants is high. Grains are bold and weigh more.
	Greengram	Popularisation of V BN (Gg) 3 greengram	While threshing the harvested pods, the grains were detached easily and spillage loss is very less.
	Rice	Introduction of Co(R)H 3 rice hybrid under SRI	The cost of hybrid seed was much reduced and yield was high due to cultivation of hybrid rice under SRI.
	Rice	Introduction of Semi dry rice variety Anna	Better yield than the check variety in rainfed situation
Ri	се	Popularisation of fully mechanized cultivation of rice	Labour saving and drudgery reduction Cost of the equipment is high
	Bajra	Introduction of bajra variety Co(Cu) 9	The yield is high due to earhead length. The total tiller production is high but the productive tillers is relatively lesser. The culm thickness is more and animals are reluctant to feed the stalk unless it is chopped well. If combined with chaff cutter it is good.
	Kudiraivali – Barnyard millet	Popularisation Kudiraivali variety Co 2	Drought tolerant and given better yield than the local variety. Maximum return due to high market price.
	Mango	High density planting in Mango	More plants are accomodated due to high plant density.
Onio	n	Popularisation of Co(5) Onion	Reduction in cost of planting material as seeds are cheaper than bulbs. Size of the bulbs are large. Marketability is easier.
	Onion	Populaisation of Nasik Re d B ellary Onion	High yield due to big sized bulbs.
	Fodder grass	Popularisation o f Co(CN) 4 C umbu Napier hybrid grass + legume fodder desmanthus	Spineless grass type and easy to handle during cutting and feeding. Feeding is more when mixed with legume fodder.
	Guinea grass	Introduction o f Co(GG) 3 Guinea grass	It creates an opportunity to rear cattle in a more efficient manner and income is also realized through sale of milk from cattle.Comes well under shade too. Fit to be raised under coconut.
	Aseel poultry	Popularisation of CARI Aseel backyard poultry	Family income is considerably raised due to rearing the poultry Body weight increases rapidly.
	Goat – Nutrition	Popularisation of M ineral sa It lick cake	Milk yield is high when fed with the cake
	Chaff cutter	Popularisation of Chaff cutter	Time saving and drudgery reduction. Spillage loss was reduced.
	Homestead incubator	Homestead incubator for desi egg hatching	More number of egg hatching with lesser duration of time. More successful hatches. Continuous current availability is a constraint.

5.B.6.8 Extension and Training activities under FLD

SI.No.	Activity	No. of activities organised	Number of participants	Remarks
1 F	ield days	8	411	
2 F	armers Training	70	2087	
3 Me	dia coverage	-	-	
4	Training for extension functionaries	1	19	

PART VI - DEMONSTRATIONS ON CROP HYBRIDS

Demonstration details on crop hybrids

Demonstra	ation details	on crop	hybrids						1										
	Name of					Yield	(q/ha)			*Economics of					*Economics of check				
Turne	the	Name	No.	Are			(1)	%							(Rs./ha)				
Type of	technolog	of the	of	a (ha				Che	Increa	Gro	Gros	Net	**	Gro	Gros	Net	**		
Breed	y demonstr	hybrid	De	(ha		Demo			se	ss Cos	s Retur	Retu	BC	ss Cos	s Retu	Retu	BC		
	ated		mo)				ck		t	n	rn	R	t	rn	rn	R		
	aleu				Н	L	Α			ι	11			ι	111				
Cereals					11	L	~												
Bajra																			
Maize																			
Paddy Int	r oducti	Co(R)	10	4	7.26	.5 6	. 9	5.4 3	0	200	6940	552	3.4	200	540	340	2.8		
i dddy ini	on of	H 3	10	т	1.20	.0 0	4	0.4 0.		00	0	00	7	00	00	00	4		
	Co(R)H 3										Ŭ								
	rice																		
	hybrid																		
	uner SRI																		
Sorghum																			
Wheat																			
Others																			
(pl.specif																			
y)																			
Total																			
Oilseeds																			
Castor Int		YRC	12 5		19.	17.	18.	10.5 4	3	897	5575	467	6.	950	423	328	4.4		
	on of	H 1			5	5	5			0	0	80	21	0	00	00	5		
	castor																		
	hybrid																		
Mustand	YRCH 1																		
Mustard Safflower																			
Sanower																			
Sunflowe	ICM K	BSH	12 5		16.	15 1	6.	14.8	9.0 7	22	1932	120	2.6	719	177	105	2.4		
r		41	12.5		5	13 1	0. 1	2	9.07	6	0	94	2.0	2	80	88	2.4 7		
Groundn					-														
ut																			
Soybean																			
Others																			
(pl.specif																			
y)																			
Total																			
Pulses																			
Greengr																			
am																			
Blackgra																			
M Dengelar																			
Bengalgr																			
am Redgram																			
Others																			
(pl.specif																			
(pi.specii y)																			
y) Total																			
Vegetabl																			
e crops																			
Bottle																			
gourd																			
J		I						I	ļ	l	I	l	I			۱			

0																	
Capsicu																	
m																	
Others																	
(pl.specif																	
y)																	
Total																	
Cucumb																	
er																	
Tomato																	
Brinjal																	
Okra																	
Onion																	
Potato																	
Field																	
bean																	
Others																	
(pl.specif																	
y)																	
Total																	
Commer																	
cial																	
crops																	
Sugarca																	
ne																	
Coconut																	
Others																	
(pl.specif																	
y)																	
Total																	
Fodder	Hybrid	Co(C	20 20)	30	20	25	213	19.4 6	24	1435	811	2.3	509	958	449	1.8
crops	popularis	N) 4 +	2020	unit	02	88	45	1	10.10	44	53	09	0	78	88	10	8
0.000	ation	Co 1		s of				•			•••		· ·				Ŭ
				10													
				cen													
				ts													
				eac													
				h													
Maize																	
(Fodder)																	
Sorghum					-		-										
(Fodder)																	
Others																	
(pl.specif																	
(pi.speen y)																	
Total																	
Total	l							L	L		I	I	L			L	

H-High L-Low, A-Average

*Please ensure that the name of the hybrid is correct pertaining to the crop specified

PART VII. TRAINING

7.A.. Farmers' Training including sponsored training programmes (On campus)

	No. of	f No. of Participants										
Area of training	Courses		General	T		SC/ST			Grand Tot			
		Male	Female	Total	Male	Female	Total	Male	Female	Total		
Crop Production												
Weed Management										ļ		
Resource Conservation Technologies												
Cropping Systems										ļ		
Crop Diversification												
Integrated Farming												
Micro Irrigation/Irrigation												
Seed production	2	7	53	60	-	-	-	7	53	60		
Nursery management												
Integrated Crop Management	18	253	184	437	49	58	107	302	242	544		
Soil and Water Conservation												
Integrated Nutrient Management												
Production of organic inputs												
Others (pl.specify)												
Horticulture												
a) Vegetable Crops												
Production of low value and high volume crop												
Off-season vegetables												
Nursery raising												
Exotic vegetables												
Export potential vegetables												
Grading and standardization												
Protective cultivation												
Others (pl.specify)												
b) Fruits												
Training and Pruning												
Layout and Management of Orchards												
Cultivation of Fruit												
Management of young plants/orchards												
Rejuvenation of old orchards												
Export potential fruits												
Micro irrigation systems of orchards												
Plant propagation techniques												
Others (pl.specify)									1			
c) Ornamental Plants												
Nursery Management												

Management of potted plants										
Export potential of ornamental plants										
Propagation techniques of Ornamental										
Plants										
Others (pl.specify)										
d) Plantation crops										
Production and Management technology										
Processing and value addition										
Others (pl.specify)										
e) Tuber crops										
Production and Management technology										
Processing and value addition										
Others (pl.specify)										
f) Spices										
Production and Management technology										
Processing and value addition										
Others (pl.specify)										
g) Medicinal and Aromatic Plants										
Nursery management										
Production and management technology										
Post harvest technology and value addition										
Others (pl.specify)										
Soil Health and Fertility Management										
Soil fertility management	1	19	-	19	4	2	6	23	2	25
Integrated water management										
Integrated nutrient management										
Production and use of organic inputs										
Management of Problematic soils										
Micro nutrient deficiency in crops	1	21	-	21	4	-	4	25	-	25
Nutrient use efficiency										
Balanced use of fertilizers	1	16	6	22	-	-	-	16	6	22
Soil and water testing	2	25	32	57	-	2	2	25	34	59
Others (pl.specify)										
Livestock Production and Management										
Dairy Management	1									
Poultry Management	1	14	5	19 2		4	61	6	9	25
Piggery Management	1									
Rabbit Management	1									
Animal Nutrition Management										
Animal Disease Management	1	11	2	13	8	-	8	19	2	21
Feed and Fodder technology	1									
r ood and r oddor toormology										

	1	1	[r	1	r	1	[
Others (pl.specify)									
Home Science/Women empowerment									
Household food security by kitchen gardening and nutrition gardening									
Design and development of low/minimum cost diet									
Designing and development for high nutrient efficiency diet									
Minimization of nutrient loss in processing									
Processing and cooking									
Gender mainstreaming through SHGs									
Storage loss minimization techniques									
Value addition									
Women empowerment									
Location specific drudgery production									
Rural Crafts									
Women and child care									
Others (pl.specify)									
Agril. Engineering									
Farm machinery and its maintenance									
Installation and maintenance of micro irrigation systems									
Use of Plastics in farming practices									
Production of small tools and implements									
Repair and maintenance of farm machinery and implements									
Small scale processing and value addition									
Post Harvest Technology									
Others (pl.specify)									
Plant Protection									
Integrated Pest Management									
Integrated Disease Management									
Bio-control of pests and diseases									
Production of bio control agents and bio pesticides									
Others (pl.specify)									
Fisheries									
Integrated fish farming									
Carp breeding and hatchery management									
Carp fry and fingerling rearing									
Composite fish culture									
Hatchery management and culture of freshwater prawn									
Breeding and culture of ornamental fishes									
Portable plastic carp hatchery									
Pen culture of fish and prawn									
Shrimp farming									

Edible oyster farming										
Pearl culture										
Fish processing and value addition										
Others (pl.specify)										
Production of Inputs at site										
Seed Production										
Planting material production										
Bio-agents production										
Bio-pesticides production										
Bio-fertilizer production										
Vermi-compost production										
Organic manures production										
Production of fry and fingerlings										
Production of Bee-colonies and wax sheets	1	50	-	50	-	-	-	50	-	50
Small tools and implements										
Production of livestock feed and fodder										
Production of Fish feed										
Mushroom production	1	43	2	45 -		-	- 43		2	45
Apiculture										
Others (pl.specify)										
Capacity Building and Group Dynamics										
Leadership development										
Group dynamics										
Formation and Management of SHGs										
Mobilization of social capital										
Entrepreneurial development of farmers/youths										
Others (pl.specify)										
Agro-forestry										
Production technologies										
Nursery management										
Integrated Farming Systems										
Others (PI. specify)										
TOTAL	29	459 2	84	743	67	66	133	526 3	5 0	876

7.B.. Farmers' Training including sponsored training programmes (Off campus)

	No. of				No.	of Partici	pants			
Area of training	Courses	Mala	General Female	Tatal	Mala	SC/ST	Tatal	Mala	Grand Tota	
Crop Production		Male	Female	Total	Male	Female	Total	Male	Female	Total
Weed Management	2	29	20	49 3		6	93	2	26	58
Resource Conservation Technologies	2	20	20	400			50	~	20	00
Cropping Systems										
Crop Diversification										
Integrated Farming										
Micro Irrigation/Irrigation										
Seed production										
Nursery management										
Integrated Crop Management	8	120	164	284	30	36	66	150	200	350
Soil and Water Conservation	0	120	104	204	00	30	00	100	200	000
Integrated Nutrient Management	1	31	43	5	17	32	0	48	7	55
Production of organic inputs		51	40	5	17	52	0	40	1	55
Others (pl.specify)										
Horticulture										
a) Vegetable Crops										
Production of low value and high volume										
crop										
Off-season vegetables										
Nursery raising										
Exotic vegetables										
Export potential vegetables	13	65	260	325	-	-	-	65	260	325
Grading and standardization										
Protective cultivation										
Others (pl.specify)										
b) Fruits										
Training and Pruning										
Layout and Management of Orchards										
Cultivation of Fruit										
Management of young plants/orchards										
Rejuvenation of old orchards										
Export potential fruits										
Micro irrigation systems of orchards										
Plant propagation techniques										
Others (pl.specify)										
c) Ornamental Plants			1							
Nursery Management										
Management of potted plants										
Export potential of ornamental plants										

Propagation techniques of Ornamental Plants										
Others (pl.specify)										
d) Plantation crops										
Production and Management technology										
Processing and value addition										
Others (pl.specify)										
e) Tuber crops										
Production and Management technology										
Processing and value addition										
Others (pl.specify)										
f) Spices										
Production and Management technology										
Processing and value addition										
Others (pl.specify) g) Medicinal and Aromatic Plants										
Nursery management										
Production and management technology										
Post harvest technology and value addition										
Others (pl.specify)										
Soil Health and Fertility Management										
Soil fertility management										
Integrated water management										
Integrated nutrient management										
Production and use of organic inputs										
Management of Problematic soils										
Micro nutrient deficiency in crops										
Nutrient use efficiency										
Balanced use of fertilizers										
Soil and water testing	1	6	22	28	-	2	2	6	24	30
Others (pl.specify)										
Livestock Production and Management										
Dairy Management										
Poultry Management										
Piggery Management										
Rabbit Management										
Animal Nutrition Management										
Animal Disease Management										
Feed and Fodder technology	4	64	96	160	2	-	2	66	96	162
Production of quality animal products										
Others (pl.specify)										
Home Science/Women empowerment										
Household food security by kitchen										

gardening and nutrition gardening									
Design and development of low/minimum									
cost diet									
Designing and development for high nutrient efficiency diet									
Minimization of nutrient loss in processing									
Processing and cooking									
Gender mainstreaming through SHGs									
Storage loss minimization techniques									
Value addition	2	11 23	34	6	5	11	17 2	8	45
Women empowerment									
Location specific drudgery production									
Rural Crafts									
Women and child care									
Others (pl.specify)									
Agril. Engineering									
Farm machinery and its maintenance									
Installation and maintenance of micro irrigation systems									
Use of Plastics in farming practices									
Production of small tools and implements									
Repair and maintenance of farm machinery and implements									
Small scale processing and value addition									
Post Harvest Technology									
Others (pl.specify)									
Plant Protection									
Integrated Pest Management									
Integrated Disease Management									
Bio-control of pests and diseases									
Production of bio control agents and bio pesticides									
Others (pl.specify)									
Fisheries									
Integrated fish farming									
Carp breeding and hatchery management									
Carp fry and fingerling rearing									
Composite fish culture									
Hatchery management and culture of freshwater prawn									
Breeding and culture of ornamental fishes									
Portable plastic carp hatchery									
Pen culture of fish and prawn									
Shrimp farming									
Edible oyster farming									
Pearl culture		1	1	1		1			

Fish processing and value addition										
Others (pl.specify)										
Production of Inputs at site										
Seed Production										
Planting material production										
Bio-agents production										
Bio-pesticides production										
Bio-fertilizer production										
Vermi-compost production	1	28 24		52	5	7	12	33 3	1	64
Organic manures production	1	22	13	35 -		-	- 2	2	13	35
Production of fry and fingerlings										
Production of Bee-colonies and wax sheets										
Small tools and implements										
Production of livestock feed and fodder										
Production of Fish feed										
Mushroom production	3	39	50	89 1		-	1 40		50	90
Apiculture										
Others (pl.specify)										
Capacity Building and Group Dynamics										
Leadership development										
Group dynamics										
Formation and Management of SHGs										
Mobilization of social capital										
Entrepreneurial development of farmers/youths										
Others (pl.specify)										
Agro-forestry										
Production technologies										
Nursery management										
Integrated Farming Systems										
Others (Pl. specify)										
TOTAL	36	415	676	1091 6	4	59	123 4	79	735	1214

7.C. Training for Rural Youths including sponsored training programmes (on campus)

	No. of				No. (of Partici	pants			
Area of training	No. of Course		General	-		SC/ST			Grand Tot	al
5	S	Mal	Femal	Tota	Mal	Femal	Tota I	Mal	Femal	Tota
Nursery Management of Horticulture crops		е	е		е	е		е	е	1
Training and pruning of orchards										
Protected cultivation of vegetable crops										
Commercial fruit production										
Integrated farming										
Seed production										
Production of organic inputs										
Planting material production										
Vermi-culture										
Mushroom Production										
Bee-keeping										
Sericulture										
Repair and maintenance of farm machinery and implements										
Value addition										
Small scale processing										
Post Harvest Technology										
Tailoring and Stitching										
Rural Crafts										
Production of quality animal products										
Dairying										
Sheep and goat rearing										
Quail farming										
Piggery										
Rabbit farming										
Poultry production										
Ornamental fisheries										
Composite fish culture										
Freshwater prawn culture										
Shrimp farming										
Pearl culture		1						1		
Cold water fisheries		1						1		
Fish harvest and processing technology		1						1		
Fry and fingerling rearing		1						1		
Any other (pl.specify)										
TOTAL		1								

7.D. Training for Rural Youths including sponsored training programmes (off campus)

	No. of				No.	of Partici	pants			
Area of training	Course		General			SC/ST			Grand Tot	
5	S	Mal	Femal	Tota I	Mal	Femal	Tota I	Mal	Femal	Tota I
Nursery Management of Horticulture crops		е	е	1	е	е		е	е	
Training and pruning of orchards										
Protected cultivation of vegetable crops										
Commercial fruit production										Ì
Integrated farming										
Seed production										
Production of organic inputs										
Planting material production										
Vermi-culture										
Mushroom Production										ł
Bee-keeping										
Sericulture										
Repair and maintenance of farm machinery and implements										
Value addition										
Small scale processing										
Post Harvest Technology										
Tailoring and Stitching										
Rural Crafts										
Production of quality animal products										
Dairying										
Sheep and goat rearing										
Quail farming										
Piggery										
Rabbit farming										
Poultry production										<u> </u>
Ornamental fisheries										
Composite fish culture										
Freshwater prawn culture										
Shrimp farming										
Pearl culture		İ								
Cold water fisheries		İ								
Fish harvest and processing technology										
Fry and fingerling rearing		1			1			1		<u> </u>
Any other (pl.specify)										<u> </u>
TOTAL						1			1	<u> </u>

7.E. Training programmes for Extension Personnel	including sponsored training programmes	(on campus)
7.L. Haining programmes for Extension reisonner	including sponsored training programmes	(on campus)

					No	of Dorticir	anto			
	No. of		Comonal		INO. C	of Particip	Dants			-
Area of training	Course	Mal	General Femal	Tota	Mal	SC/ST Femal	Tota	Mal	Grand Tota	al Tota
	S	e	e	l	e	e	I	e	e	
Productivity enhancement in field crops	4	68	6	74	12	18	30	80	24	104
Integrated Pest Management										
Integrated Nutrient management										
Rejuvenation of old orchards										
Protected cultivation technology										
Production and use of organic inputs										
Care and maintenance of farm machinery and implements										
Gender mainstreaming through SHGs	2	21	16	37	-	-	-	21	16	37
Formation and Management of SHGs										
Women and Child care										
Low cost and nutrient efficient diet designing										
Group Dynamics and farmers organization										
Information networking among farmers										
Capacity building for ICT application										
Management in farm animals										
Livestock feed and fodder production										
Household food security										
Any other (pl.specify) Seed production	2 38		15	53	3	4	7	41	19	60
Total	8 12	7	37	164	15	22	37	142	59	201

7.F. Training programmes for Extension Personnel including sponsored training programmes (off campus)

	No. of				No. d	of Partici	oants			
Area of training	Course		General			SC/ST		(Grand Tot	al
7 i cu or truining	S	Mal	Femal	Tota	Mal	Femal	Tota	Mal	Femal	Tota
	-	е	е	I	е	е	I	е	е	I
Productivity enhancement in field crops										
Integrated Pest Management										
Integrated Nutrient management										
Rejuvenation of old orchards										
Protected cultivation technology										
Production and use of organic inputs										
Care and maintenance of farm machinery and implements										
Gender mainstreaming through SHGs										
Formation and Management of SHGs										
Women and Child care										
Low cost and nutrient efficient diet designing										
Group Dynamics and farmers organization										
Information networking among farmers										
Capacity building for ICT application										
Management in farm animals										
Livestock feed and fodder production										
Household food security										
Any other (pl.specify)										
Total										

7.G. Sponsored training programmes

		No. of				No.	of Particip	oants			
S.No	Area of training	Course		General			SC/ST		(Grand Tota	al
	A lea of daming	S	Mal	Femal	Tota	Mal	Femal	Tota	Mal	Femal	Tota
		Ŭ	е	е	I	е	е	1	е	е	I
1	Crop production and management										
1 -	Increasing production and productivity of	7 40	0	00	004	<u>^</u>	10	05	407	110	040
1.a.	crops	7 12	2	99	221	6	19	25	127	118	246
1.b.	Commercial production of vegetables										
2	Production and value addition										
2.a. Fi	uit Plants										
2.b. O	rnam ental plants										
2.c. S	pices crops										
3.	Soil health and fertility management										
4	Production of Inputs at site	1	22 13	}	35	-	-	-	22 13	3	35
5	Methods of protective cultivation										
6	Others (pl.specify)										
7	Post harvest technology and value										
7	addition										
7.a.	Processing and value addition										
7.b. O	th ers (pl.specify)										
8	Farm machinery										
8.a.	Farm machinery, tools and implements										
8.b. O	th ers (pl.specify)										
9.	Livestock and fisheries										
10	Livestock production and management										
10.a.	Animal Nutrition Management										
10.b.	Animal Disease Management										
10.c F	is heries Nutrition										
10.d F	is heries Management										
10.e. C	t hers (pl.specify)										
11.	Home Science										
11.a. H	lous ehold nutritional security										
11.b.	Economic empowerment of women										
11.c.	Drudgery reduction of women										
11.d. C	t hers (pl.specify)										
12	Agricultural Extension										
12.a.	Capacity Building and Group Dynamics										
12.b.	Others (pl.specify)	2	21 16		37				21 16		37
12.0.	Gender Sensitization Module Programme					-	-	-			
	Total	10	165 1	28	293	6	19	25	170 1	47	318

Details of sponsoring agencies involved

Name of the scheme	Date/ Month of initiation	Funding agency	Amount (Rs. in lakhs)
ATMA	March, 2011	GOI & State Department of	0.70
		Agriculture	0.10
NADP-PF	April 2010	GOI and GOTN	33.00
TN –IAMWARM	April 2010	World Bank	6.70
NADP- QSP Training	April 2010	GOI and GOTN	1.495

7.H. Details of vocational training programmes carried out by KVKs for rural youth
--

	etans of vocational training programmes car	No. of		,		No.	of Particip	oants			
S.No	Area of training	Course	General		SC/ST			Grand Total		al	
	Area or training	S	Mal	Femal	Tota	Mal	Femal	Tota	Mal	Femal	Tota
		5	е	е	I	е	е	I	е	е	I
1	Crop production and management										
1.a. C											
1.b.	Commercial fruit production										
1.c. C	ommercial vegetable production										
1.d.	Integrated crop management	2	27	8 35		4	71	1	31	15	46
1.e.	Organic farming										
1.f.	Others (pl.specify)										
2	Post harvest technology and value addition										
2.a.	Value addition										
2.b.	Others (pl.specify)										
3.	Livestock and fisheries										
3.a.	Dairy farming										
3.b.	Composite fish culture										
3.c.	Sheep and goat rearing										
3.d. P	iggery										
3.e.	Poultry farming										
3.f.	Others (pl.specify)										
4.	Income generation activities										
4.a. V	er mi-composting	1	23	-	23	-	2	2	23	2	25
4.b.	Production of bio-agents, bio-pesticides, bio-fertilizers etc.										
4.c.	Repair and maintenance of farm machinery										
4.0.	and implements										
4.d.	Rural Crafts										
4.e.	Seed production										
4.f.	Sericulture										
4.g.	Mushroom cultivation										
4.h.	Nursery, grafting etc.										
4.i.	Tailoring, stitching, embroidery, dying etc.										
4.j.	Agril. para-workers, para-vet training										
4.k.	Others (pl.specify) Bee keeping	1	20	4	25	-	1	1	20	5	25
5	Agricultural Extension										
5.a.	Capacity building and group dynamics										
5.b.	Others (pl.specify)										
	Grand Total	4	70	12 83		4	10 1	4	74	22	96

PART VIII - EXTENSION ACTIVITIES

Extension Programmes (including activities of FLD programmes)

Nature of Extension	No. of	No. of Pa	articipants (General)	No.	of Participa SC / ST	ants	N	o.of extensi personnel	on
Programme	Programmes	Male	Female	Total	Male	Female	Total	Male	Female	Total
Field Day	91	75	170	345	37	29	66	-	-	-
Kisan Mela										
Kisan Ghosthi										
Exhibition 5		1175	925	2100	-	-	-	12	9	21
Film Show	2	42	54 96		-	-	-			
Method Demonstrations	10	135 9	5	230	15	25 3	5			
Farmers Seminar										
Workshop										
Group meetings 3		88	62	150						
Lectures delivered as	00.4									
resource persons	28 4	98	242	740						
Newspaper coverage	15			1150						
Radio talks	10			1000						
TV talks										
Popular articles										
Extension Literature	20			1020						
Advisory Services	124			1040						
Scientific visit to farmers	43			43						
field										
Farmers visit to KVK				2125						
Diagnostic visits	8			38						
Exposure visits	6	195 50		245	43	12 55				
Ex-trainees Sammelan										
Soil health Camp	2	40	35	75	10	15	25			
Animal Health Camp	2	31	16	37	7	3	10			
Agri mobile clinic					-					
Soil test campaigns										
Farm Science Club										
Conveners meet										
Self Help Group	5		125	125						
Conveners meetings										
Mahila Mandals									1	
Conveners meetings										
Celebration of important									1	
days (specify)										
Any Other (Specify)							1	1	1	1
Total	292	2379	1774	10559	112	84	191	12	9	21

PART IX - PRODUCTION OF SEED, PLANT AND LIVESTOCK MATERIALS

9.A. Production of seeds by the KVKs

Crop category	Name of the crop	Variety	Hybrid	Quantity of seed (qtl)	Value (Rs)	Number of farmers to whom provided
Cereals (crop wise)						
Oilseeds						
Pulses						
Commercial crops						
Vegetables						
Flower crops						
Spices						
Fodder crop seeds						
Fiber crops						
Forest Species						
Others (specify)						
Total						

9.B. Production of planting materials by the KVKs

Crop category	Name of the crop	Variety	Hybrid	Number	Value (Rs.)	Number of farmers to whom provided
Commercial						
Vegetable seedlings						
Fruits						
Ornamental plants						
Medicinal and Aromatic	Amla Ka	nchan, NA7		2300 57	500	1
	Wood apple			654 3	274	1
Spices						
Tuber						
Fodder crop saplings						
Forest Species	Pungam			4 2	4	1
Others(specify)	Vermi Unit			20 34	000	2
Total						

9.C. Production of Bio-Products

Bio Products	Name of the bio-product	Quantity Kg	Value (Rs.)	Number of farmers to whom provided
Bio Fertilizers				
Bio-pesticide				
Bio-fungicide				
Bio Agents				
Others (specify)	Portable vermi unit	20 Nos	34000	20
Total				

9.D. Production of livestock materials

Particulars of Live stock	Name of the breed	Number	Value (Rs.)	Number of farmers to whom provided
Dairy animals				
Cows				
Buffaloes				
Calves				
Others (PI. specify)				
Poultry				
Broilers				
Layers				
Duals (broiler and layer)				
Japanese Quail				
Turkey				
Emu				
Ducks				
Others (PI. specify)				
Piggery				
Piglet				
Others (Pl.specify)				
Fisheries				
Fingerlings				
	Black moli	28	210	1
	Orange moli	26	195	1
	Gold 10		100	1
	Red moli	28	70	1
	Shark 20		200	1
	White 20		150	1
Others (PI. specify)				
Total		132	925	7

PART X – PUBLICATION, SUCCESS STORY, SWTL, TECHNOLOGY WEEK AND DROUGHT MITIGATION

10. A. Literature Developed/Published (with full title, author & reference)

(A) KVK News Letter ((Date of start, Periodicity, number of copies distributed etc.)

(B) Literature developed/published

Item	Title	Authors name	Number
Research papers			
Technical reports	Report on FLD on Cotton 2010-11	S. Murali Krishnasamy M.Rajendiran	
	Report on FLD on Pulses 2010-11	S. Murali Krishnasamy S.Muthuramu S. Rathika	
	Medicinal Plants Scheme Report	S. Murali Krishnasamy	
	IAMWARM Senkottaiyar sub basin Report	S. Murali Krishnasamy S.Rathika	
	IAMWARM Vembar sub basin Report	S. Murali Krishnasamy S.Rathika	
	NADP Precision farming Report	S. Murali Krishnasamy R. Jayashree S. Muthuramu	
	Report on high level committee	S. Murali Krishnasamy	
News letters			
Technical bulletins			
Popular articles			
Extension literature	Honeybee rearing	S. Murali Krishnasamy and M.Rajendiran	100
Ra	t control	S. Rathika S. Murali Krishnasamy S. Muthuramu	200
	Insitu soil moisture conservation practices	S. Rathika S. Murali Krishnasamy R. Jayashree	100
	Vermicompost production techniques	S. Murali Krishnasamy R. Jayashree S. Rathika	100
	Improved production techniques for rainfed crops	S. Rathika S. Murali Krishnasamy s. Muthuramu	50
Mus	hroom production	S. Rathika S. Murali Krishnasamy	50
	Green manuring	S. Rathika S. Murali Krishnasamy	50
	Parthenium weed control	S. Murali Krishnasamy S. Rathika	50
	About Vembar sub basin details and activities	S. Murali Krishnasamy S. Rathika	500
	Semi dry rice cultivation techniques	S. Murali Krishnasamy S. Rathika	250
	Seed treatment in rice	S. Murali Krishnasamy S. Rathika	250
	Good quality seed selection in rice with salt water treatment	S. Murali Krishnasamy S. Rathika	250
	Foliar nutrition in pulses	S. Murali Krishnasamy S. Rathika	250

	Biofertilizer seed treatment in pulses and rice	S. Murali Krishnasamy S. Rathika	100
	Seed hardening techniques in rainfed crops	S. Murali Krishnasamy S. Rathika	100
	Vermicompost production techniques	S. Murali Krishnasamy S. Rathika	250
	Soil testing	S. Murali Krishnasamy S. Rathika	250
	Soil testing and soil health maintenance	S. Murali Krishnasamy S. Rathika	250
	SRI cultivation techniques	S. Murali Krishnasamy S. Rathika	450
	IPM practices	S. Murali Krishnasamy S. Rathika	250
Others (Pl. specify)			
TOTAL			

10.B. Details of Electronic Media Produced

S. No.	Type of media (CD / VCD / DVD/ Audio-Cassette)	Title of the programme	Number

10.C. Success Stories / Case studies, if any (two or three pages write-up on each case with suitable action photographs. The Success Stories / Case Studies need not be restricted to the reporting period).

Period 2010-11

1. Mechanised sowing in rainfed groundnut

a. Background:

Groundnut was sown behind country plough under rainfed situation.

This took longer time to sow and the soil moisture depleted drastically and more area could not be covered in lesser time.

Tractor drawn seed drill was introduced and sowing was taken up in broad bed and furrows at Maraikulam village.

b. Interventions:

Tractor drawn seed drill was introduced and sowing was taken up in broad bed and furrows at Maraikulam village. Gypsum application as basal and top dressing was emphasized and farmers adopted the technology. Groundnut rich a growth regulator cum micro nutrient spray recommended by TNAU was demonstrated.

c. Process:

Field was ploughed twice with tractor drawn cultivator.

FYM was applied at 12.5 t/ha.

Gypsum was applied @ 200 kg/ha as basal and 200 kg/ha as top dressing prior to earting up at pegging stage.

Tractor drawn broad bed furrow former cum seed drill was used for sowing groundnut.

Groundnut rich a micronutrient mixture was sprayed to enhance crop growth and productivity.

Gorundnut stripper was used to strip the pods after harvest.

d. Technology:

Tractor drawn broad bed furrow former cum seed drill was used for sowing groundnut. Sowing with tractor drawn seed drill ensures proper depth of sowing, good crop establishment. More area could be covered in less time before the soil moisture gets depleted.

The demo plot recorded groundnut pod yield of 17 q/ha compared to 11 q/ha in conventional sowing. The yield increase was 54%. The number of filled pods were 25 in demo compared to 11 in conventional method which caused the difference.

- e. Impact:
- i. Horizontal spread:

Tractor drawn broad bed furrow cum seed drill was used for sowing groundnut.

The adjacent farmers who were witnessing also adopted the technology and in a contiguous block 60 acres (25 ha) were taken up in the Maraikulam village with the assistance of Thiru. Raman.

Seed drill sowing has spread from maraikulam to Kanjamanaicken patti and to Narikudi and now three blocks are using the seed drill for sowing.

ii. Economic gains:

The demo plot recorded a net income of Rs 54,890/ha compared to Rs.56,250 in the conventional system. The B:C ratio was 3.54 in demo and 2.5 in conventional sowing.

iii. Employment generation:

As the productivity increased additional employment of 6 mandays/ha was generated to harvest the additional produce. The indirect employment is still more.

2. Hybrid Maize Cultivation (Hy. NK 6240)

f. Background:

Farmers traditionally use local varieties which are low yielders. Hence, Maize hybrid seeds of NK 6240 were given and demonstrated in selected farmers' fields in Virudhunagar district under ISOPOM – Maize Programme of Directorate of Maize, New Delhi by KVK, Virudhunagar during 2010-11.

g. Interventions:

Popularisation of ICM in maize with emphasis to hybrids was conducted at Virudhunagar. Out of 25 farmers Th.I.Bagyaraj of kathalampatti recorded the highest yield of 4 1.8 q/ha in hybrid maize NK 6 240 by a dopting scientific management practices under rainfed situation.

h. Process:

Introduction of high yielding hybrid NK 6240 was done in villages Aladipatti, Kathalampatti, Kanjanaickanpatti and Chinnachettikurichi of Aruppukottai Taluk, Thottiyangulam of Thiruchuli Taluk, Melathulukkangulam of Kariyapatti Taluk and Thiruvengadapuram and Subramaniyapuram of Sivakasi Taluk.

i. Technology:

NK 6240 with 110 days duration and yielding capacity of 4300 kg of seeds per ha in rainfed situation and 5200 kg of seeds per ha in irrigated situation was introduced.

Seed treatment, irrigation at critical crop growth stages, weeding in the initial crop stages and balanced fertilizer application was done. Micro nutrient and growth promoter rich Maize max was advocated for better crop growth.

j. Impact:

iv. Horizontal spread:

Hybrid Maize cultivation technologies were explained in the above mentioned villages of different taluks of Virudhunagar district by conducting demonstrations in twenty five farmers' field, trainings and field day. Awareness was created among the farmers. The variety is now popular among the farmers of the operational area. As maize is grown in single season the impact can be studied during the ensuing season.

v. Economic gains:

At Virudhunagar, Maize hybrid, NK 6240 yielded at a maximum of 41.8 q/ha in the field of Th.I.Bagyaraj of kathalampatti which is 28% increased yield over the check hybrid Cauvery which recorded 32.6 q/ha in rainfed situation. The gross return was Rs. 32,960/- per ha and net return was Rs. 17,420/- per ha with a B:C ratio of 2.12.

vi. Employment generation:

NK 6240 is tolerant to drought during flowering period and seed setting in cob and it fetches 25% more grain yield than the local varieties. As the productivity increases the by 25%, the labour required to harvest, th reshing, winnowing, bagging, handling and marketing increases directly increases the labour requirement by 20-25%. Indirectly the labour required for transporting, feeding to poultry or value addition food chain generates more employment opportunities which contribute to increased GDP.

3. Popularization of Blackgram variety VBN (Bg) 3

a. Background:

Farmers were using low yielding varieties like T9. Hence, the recently released b lackgram variety VBN(Bg)3 was demonstrated in selected farmers' fields in Virudhunagar district under "Special Technology Demonstration for Harnessing Pulses Productivity" by KVK, Virudhunagar during 2010-11. This programme envisages demonstrating production potential of newly developed technologies and varieties of pulses at farmer's field through KVKs so as to bring in enhanced application of modern technologies to address the issues related to increased production of pulses in the country.

b. Interventions:

Pulse productivity has to be enhanced by improved package of practices and by overcoming the various production constraints such as allocation of marginal lands, non adoption of High Yielding Varieties, inadequate plant population, imbalanced fertilizer application, not adopting mi cronutrient application and plant p rotection m easures etc. The ICM tec hnology which not only augments p ulse production by training and issue of inputs, but a lso, in making the farmer adopt the full package without omission for s ustained production and productivity. On demonstrating the full package the farmers not only get convinced of the technologies but also, act as source of propaganda for the neighbouring farmers to follow the protolcol. Ten farmers were selected in the Vadakkunatham village of Aruppukottai taluk and frontline demonstrations were conducted in their fields during Rabi 2010-11. Black gram variety VBN (Bg) 3 was used for demonstration in comparison with local check T9 in blackgram.

c. Process:

FLD on pulses – blackgram was conducted in Thiru S. S. Subburaj field at Vadakkunatham village of Aruppukkottai block.

Black gram variety VBN (Bg) 3 was used for demonstration in comparison with local check T9 in blackgram.

The land was ploughed twice using tractor drawn tiller to get optimum tilth for better root and shoot growth.

Sowing was taken up at right time with a spacing of 30 cm x 10 cm a nd care was taken to ensure optimum plant population by gap filling on 7th DAS.

Weeding was done using hand hoe.

To enhance flower retension and better pod set, Pulse wonder @ 2 kg/ha was sprayed at the time of flowering and pod formation. Need based plant protection measures were taken up to keep the pest population under check.

Harvesting was done at correct maturity to avoid field losses by dehiscence.

Technology:

VBN(Bg)3 with 65-70 days duration and yielding capacity of 790 kg of seeds per ha in rainfed situation and 900 kg of seeds per ha in irrigated situation were introduced.

The variety is photo-insensitive and tolerant to Yellow Mosaic Virus (YMV) disease. Pods were comparatively bigger in size and seeds were well filled. While threshing the harvested pods, the grains were detached easily and spillage loss is very less. The farmers of vadakkunatham village are major seed distributors to the nearby villages during sowing period and they have got higher price value for their produce during that period.

ICM was fully demonstrated.

- d. Impact:
- i. Horizontal spread:

Improved pulse production te chnologies were e xplained in the Vadakkunatham village of Arup pukottai tal uk by conducting demonstrations in selected farmers' field and by couple of trainings. Awareness was created among the farmers.

Now the variety is grown in Srivilliputhur block, Rajapalayam block and Watrap block which have more than 60% of the blackgram area under VBN (Bg) 3 in the above blocks.

The State Department of Agriculture also, has taken this variety for poularisation and nearly 45% of the area under pulses in the district is covered by VBN (Bg) 3.

ii. Economic gains:

FLD on pulses – b lackgram was conducted in Thiru S. S. Subburaj field at Vadakkunatham village of Aruppukkottai block. Th. S. Subburaj recorded an yield of 785 kg/ha of blackgram VBN (Bg) 3 grains compared to 602 kg/ha in check variety T9 with an increase of 30.4% over the check. The farmer recorded a grass return of Rs.27475/ha and net return of Rs.18,150/ha with a B:C ratio of 2.95 under rainfed ecosystem. The check variety recorded a net return of Rs. 10664/ha and B:C ratio of 2.24 only.

iii. Employment generation:

The mar ginal i ncrease in I abour is 7 man d ays/ha. The reason is d ue to i ncreased y ield and p roduction factors. The indirect employment generation will also i ncrease by 25-3 0% as blackgram processing m arketing, t ransport etc involves extra I abour proportionate to productivity and production.

4. Popularization of Greengram variety VBN (Gg) 3

e. Background:

Farmers we re usi ng varieties lik e A DT 3 a nd V BN (Gg) 2. Hence, t he r ecently re leased blackgram variety V BN(Gg)3 w as demonstrated in selected farmers' fields in Virudhunagar district under "Special Technology Demonstration for Harnessing Pulses Productivity" by K VK, Virud hunagar during 20 10-11. This p rogramme envis ages d emonstrating production potential of new ly developed technologies and varieties of pulses at farmer's field through KVKs so as to bring in enhanced application of modern technologies to address the issues related to increased production of pulses in the country.

f. Interventions:

Pulse productivity has to be enhanced by improved package of practices and by overcoming the various production constraints such as allocation of marginal lands, non adoption of High Yielding Varieties, inadequate plant population, imbalanced fertilizer application, not adopting mi cronutrient application and plant p rotection m easures etc. The ICM tec hnology which not only augments p ulse production by training and issue of inputs, but also, in making the farmer a dopt the full package without omission for s ustained production and productivity. On demonstrating the full package the farmers not only get convinced of the technologies but also, act as source of propaganda for the neighbouring farmers to follow the protolcol. Ten farmers were selected in the Vadakkunatham village of Aruppukottai taluk and frontline demonstrations were conducted in their fields during Rabi 2010-11. Greengram variety VBN (Gg) 3 was used for demonstration in comparison with Co 1.

g. Process:

FLD on pulses – greengram was conducted in Thiru S. Ramasubramaniam field at Vadakkunatham village of Aruppukkottai block. Greengram variety VBN (Gg) 3 was used for demonstration in comparison with local check Co 1.

The land was ploughed twice using tractor drawn tiller to get optimum tilth for better root and shoot growth.

Sowing was taken up at right time with a spacing of 30 cm x 10 cm a nd care was taken to ensure optimum plant population by gap filling on 7th DAS.

Weeding was done using hand hoe.

To enhance flower retension and better pod set, Pulse wonder @ 2 kg/ha was sprayed at the time of flowering and pod formation.

Need based plant protection measures were taken up to keep the pest population under check.

Harvesting was done at correct maturity to avoid field losses by dehiscence.

Technology:

VBN(Gg)3 with 65-70 days duration was introduced.

The farmers of va dakkunatham village are major seed distributors to the nearby villages during sowing period and they have got higher price value for their produce during that period.

ICM was fully demonstrated.

- h. Impact:
- iv. Horizontal spread:

Improved pulse production te chnologies were e xplained in the Vadakkunatham village of Arup pukottai tal uk by conducting demonstrations in selected farmers' field and by couple of trainings. Awareness was created among the farmers.

Now the variety is grown in Srivilliputhur block, Rajapalayam block and Watrap block which have more than 80% of the greengram area under VBN (Gg) 3 in the above blocks.

The State Department of Agriculture also, has taken this variety for poularisation and nearly 60% of the area under pulses in the district is covered by VBN (Gg) 3.

v. Economic gains:

FLD on pulses – greengram was conducted in Thiru S. Ramasubramaniam field at Vadakkunatham village of Aruppukkottai block. Thiru S. Ramasubramaniam recorded an yield of 7.4 q/ha of greengram VBN (Bg) 3 grains compared to 6.3 q/ha in check variety Co 1 with an increase of 17% over the check Co 1. The farmer recorded a grass return of Rs.28,120/ha and net return of Rs.18,820/ha with a B:C ratio of 2.84 under rainfed ecosystem. The check variety Co 1 recorded a net return of Rs. 14190/ha and B:C ratio of 2.46 only.

vi. Employment generation:

The mar ginal i ncrease i n I abour is 4 man d ays/ha. The reason is d ue to i ncreased y ield and p roduction factors. The indirect employment ge neration will a lso increase by 15-17% as greengram p rocessing mark eting, transport e tc involves extra labour proportionate to productivity and production.

5. Front line demonstration in Bunny BT Cotton

a. Background:

Now a days hybrid BT Cotton are gaining importance which are high yielders than the local varieties.

Bunny bt was tested at Regional Research station, Aruppukkottai under ERDF scheme and performed well.

Hence, In order to get maximum net income, Bunny BT Cotton was demonstrated in selected farmers fields of Virudhunagar districts under FLD Cotton programme.

b. Interventions:

Cotton varieties are prone to boll worm attack. Bt cotton are the only panacea to combat the boll worms the organic way. Bunny bt hybrid cotton performed well under rainfed and irrigated situation and has the character of synchronized boll bursting at maturity. This saves much on labour while picking as the number of picking is reduced.

Process:

Bunny BT Cotton was introduced in the farmers holdings of G.Ashokkumar of Kovilankulam village of Aruppukottai block.

Integrated Crop Management in cotton was demonstrated with Bunny bt hybrid cotton in comparison with MRC Bt 6918.

During the summer season, when the I and was fallow summer ploughing was done. Field was prepared by tractor drawn tiller ploughed twice. Seeds were dibbled at 60 cm x 20 cm spacing.

Weeding and earthingup done.

Recommended fertilizer schedule based on soil test values were followed.

Pheromone traps were set to monitor the pest incidence.

IPM practices recommended for cotton was adopted.

Technology :

Thiru. G. Ashok kumar recorded 33.75 q/ha of cotton yield in Bunny bt under rainfed condition.

The check MRC recorded 28 bolls/plant and yield was 25 q/ha.

The rainfall and other weather conditions were conducive to cotton this year and hence, high yields were recorded.

The number of sympodia were 13/plant.

The crop attained 50% flowering at 53 days.

The per boll weight of cotton was 3.6 grams.

The number of bolls per plant was 42 with boll weight of 166 g/plant.

c. Impacts

Horizontal spread:

Bunny BT Cotton cultivation technologies were explained to the farmers in all the demo villages of different taluks of V irudhunagar districts by conducting demonstrations in fifteens farmers field, training and field day. Awareness was created among the farmers. The area under Bunny bt in the district is the highest among all the bt hybrids grown. It recorded

Economic gains:

Th.G.Ashokkumar a leading farmer of kovilankulam village of Aruppukottai taluk of Virudhunagar district obtained a gross income of Rs 1,68,750/ha and a net income of Rs. 1,43,000/ha by cultivating Bunny BT with a B:C ratio of 6.55. The reason for high returns the cost of cotton which was procured for Rs.5000/q.

Employment Generations:

Number of bolls and weight of bolls are high in Bunny BT Cotton compared to other varieties and also bollworm resistant hybrid and fetches 35% increased yield over the check.

The crop employed directly 8 days more than check variety and the same was compensated in the yield.

Period prior to 2010-11

4. Cumbu Napier Hybrid grass

Background

Cumbu napier grass slips hybrid CO(CN) 4 were given and demonstrated in sleceted farmers fileds in Virudhunagar district by Krishi Viygan Kendra, Virudhunagar during 2007 – 08.

Interventions

Since Virudhunagar is a dry district, availability for green fodder is a problem through out the year and hence farmers seek alternate sources for feeding their cattle

Impact

The FLD during 2007-08 and the trainings given to the farmers in collaboration with cooperatives like aavin made an impact among farmers of this district to adopt this technology.

Horizontal spread

The selected 25 farmers given with the slips cultivated the grass in a large scale and apart from their own use they have distributed the slips to various farmers. Each farmer have distributed to at least 10 farmers in their own village or in nearby villages. The area has spread from 10 ha to 100 ha in the district with this grass.

Economic gains

Three farmers namely - P othiraj, Gurunathan and Karalam in Kariapatti block had raised slips in ten cents during 2007 and subsequently multiplied and planted in an acre. With this they were to sell slips to many farmers apart from selling the grass as feed for cattle. Approximately they sell 50 kgs of fodder per day to different farmers. They sell the slips at the rate of Rs.0.25 per slip and upto Rs. 1.00 per kg of green fodder. The average economic gain of the three farmers is as follows.

Produ	ction per ha (q)	Cost of production (Rs.)	Gross income (Rs.)	Net in come (Rs.)
Slips (numbers)	20000 per month (Based on the indent)			5000 pe r month
Green fodder (Rs. /kg)	380	45000	150000	105000 per year

Employment generation

Cultivation of this grass has created an employment for the whole year and also gives an opportunity to rear cattle in a more efficient manner and income is also realized through sale of milk from cattle..

5. System of Rice Intensification in Rice (SRI)

Background

Senkottaiyar sub basin comes under Vaippar Basin Division covering Sattur, Aruppukottai and Virudhunagar blocks of Virudhunagar district and Pudur and Vilathikulam blocks of Thoothukudi District. The sub basin has a total registered ayacut area of 2,159 ha and has 25 non-system tanks. Out of this 25 non system tanks, 14 tanks are wet ayacut tanks and 11 are dry ayacut tanks. The cultivable area of wet ayacut tanks and dry ayacut tanks are 1,414 ha and 745 ha respectively. The soils of the sub basin are mostly deep vertisols.

Most of the area in Virudhunagar and Thoothukudi districts comes under rain fed agriculture. The success of crop cultivation depends on the amount of rainfall and its distribution. The annual average rain fall of the basin region is 766.0 mm. The average rainfall during South West Monsoon, North East monsoon, Winter and Summer are 199.6 mm, 407.5 mm 29.6 mm and 129.3 mm respectively. The cropping pattern followed in the sub basin is Rice – Pulse / Cotton / Vegetables and Maize / Chillies – Pulses. The cultivation of second crop depends on the availability of water in the tanks. The major constraints for successful crop production are lack of awareness about the latest technologies in agriculture, no n availability of quality seed material, po or soil h ealth and n on availability of labour in time to carryout timely in tercultural operations.

Status of the rice crop before implementing SRI

Rice crop is grown in an area of 160 ha in the entire sub basin area during October to January after the onset of North East Monsoon and the receipt of water in the tanks. As all the tanks in the sub basin are non system tanks, only after the availability of water in the tanks, land preparation and nursery sowing will be taken up on a large scale in the basin. Rice is cultivated by conventional method i.e. transplanting of seedlings raised in the conventional nursery. The average yield paddy in the sub basin will be around 4 - 5 t/ha. Usually as paddy is cultivated during the North- East Monsoon (October – December) which accounts for more than 50% of the total rainfall, the crop suffers from inundation / submergence for a long time due to heavy downpour. As the entire ayacut area of the tanks in the sub basin is liable for submergence, paddy is being cultivated on large scale.

Implementation process-2008-09

Period of activity (season) : October – January

Number of beneficiaries

Physical – 16 beneficiaries

Impact - 1 farmer (0.4 ha)

Total - 17 beneficiaries

SC/ ST farmers benefitted - 12.5%

Total area covered – physical and impact (in ha)

Name of the	Target (20	008-09)	Achievem (2008-09	Total	
Tank/Block/Village	Physical	Impact	Physical	Impact	
Aruppukottai Big tank/ Arupukottai / Aruppukottai			2.0	-	2.0
Chettikurchi tank/ Aruppukottai / Chidambarapuram			5.6	-	5.6
Melakaranthai tank / Pudur / Melakaranthai			1.0	-	1.0
Vadhuvarpatti tank / Aruppukottai / Vadhuvarpatti			1.4	0.4	1.8
SUB BASIN	10	70	10	0.4	10.4

The soil fertility status in all the beneficiaries fields in the 4 villages covering both Virudhunagar and Thoothukudi districts where SRI demonstrations were being held clearly showed that the soils are low in available nitrogen, medium in available phosphorus (expect in one beneficiary field in Vadhuvarpatti) and high in available potassium. The soils are also having a high pH (alkaline range).

The climatic condition during the cropping period is generally good for the paddy crop. As the season coincides with North East Monsoon period (October – December), the young transplanted seedlings were subjected to submergence for more than 10 days immediately after transplanting and it affects the crop establishment in the early stages. Similarly water shortage in the later part of the crop period (ie during Milky st age onwards) which occurred in the C hettikurchi t ank affects the grain s et to s ome extent in all the demonstrations I aid out in Chidambarapuram village. The farmers felt that these two incidences (submergence in early stage of crop growth and water shortage in later stages of the crop) had reduced the yield up to 15- 20%.

Pooled analysis of the yield data in the physical area (Tank/Block/village wise) with critical, scientific and descriptive reasoning for the probable increase/decrease in yield.

Name of the village/block		SRI (kg/ha)		Conv	ventional (kę	Per cent increase	
Name of the village/block	Max Mir	1	Ave	Max	Min	Ave	over conventional
Aruppukottai Big tank/ Arupukottai / Aruppukottai	7000	4300 5	650	6000 40	00 5	000	13.00
Chettikurchi tank/ Aruppukottai / Chidambarapuram	7900	5300 6	080	6000 45	00 5	200	16.92
Melakaranthai tank / Pudur / Melakaranthai	7000	-	7000	6500 50	00 5	750	21.74
Vadhuvarpatti tank / Aruppukottai / Vadhuvarpatti	5300	4600 4	950	4500 35	00 4	000	23.75

Status of the crop after the implementation of the technology in terms of enhancement in area, production and productivity

With the demonstrations laid out in SRI in identified beneficiaries fields, IEC activities & field days carried out under this project and through formal and informal interactions with the farmers in the sub basin area, they are now well aware of the SRI techniques. The farmers in the sub basin have also visualized the impact in terms of increase in crop yield obtained in the SRI demonstrations. The farmers in the sub basin could adopt the technologies in the coming cropping season.

All SRI b eneficiaries have r ecorded higher yields than their conventional met hod of cultivation. The increased yield in the SRI demonstrations carried out in 16 farmers land holdings ranges from 6.0% to 32.5% (% increase in yield for each farmer given below). 7% of the farmers recorded more than 7t/ha, 47% of the farmers recorded yield between 6 – 7 t/ha and 46% of farmers recorded yield in the range of 4- 6 t/ha. As most of the farmers felt that SRI requires more labourers and cost for transplanting, the increase in final yield has enabled the farmers to achieve more net income from their land holdings.

S.	Name of the farmer	Tank/ Block/ Village / District	Area (ha)	Yield (kg/ha)		Per cent
No.				Conven tional	SRI	increase over control
1.	Tmt.T.Nirmala	Aruppukottai Big tank/ Arupukottai /	1.0	6.0 7.	0	16.7
2.	Mr.Varatharajan	Aruppukottai/ Virudhunagar	1.0 4	.0	4.3	7.5
3.	Mr. K Bharatharajan	Vadhuvarpatti tank / Aruppukottai / Vadhuvarpatti/	1.0 4	.0	4.6	15.0
4.	Tmt.Vanathiammal	Virudhunagar	0.4 4	.0	5.3	32.5
5 Mr.	P.Thirumoorthy		0.6 5.	0	5.3 6.	0
6 Mr.1	<i>I</i> . Sinivasagan	Chettikurchi tank/	0.4	5.0	6.1	22.0
7	Mr. Rajesh kannan	Aruppukottai / Chidambarapuram/	0.8	6.0	7.9	31.7
8	Mr. R. Subbaraj	Virudhunagar	0.2	5.0	5.9	18.0
9 Mr.S	.Viswanathan		0.6	5.0	5.3	6.0
10 Tm	it. M.Rajalakshmi		0.4	5.0	6.1	22.0
11 Tr	it. R. Padmavathi		0.4	6.0	7.0	16.7
12 Tr	it. P.Sukkubai		0.4	5.0	6.0	20.0
13 Tr	it. B.Ruba		0.2	5.0	6.2	24.0
14 Mr	S. B.Ramachandran		0.4	5.0	5.8	16.0
15	Mr. R. Ramachandran		1.2	5.0	5.3	6.0
16 M	r.G.Ramasamy	Melakaranthai tank / Pudur / Melakaranthai/ Thoothukudi	1.0 5.	75	7.0	21.7

6 .Precision farming technologies

Background

Krishi Viygan Kendra, Virudhunagar demonstrated Precision farming technology full package with funds from TN State Govt. funds under part II plan scheme during 2007 – 08. Fertigation systems were installed in 20 ha @ 1 ha per farmer. Shri. R.Srinivasan of Melathulakkankulam village was one among the beneficieries. He cultivated vegetables viz. Chillies, tomato and Brinjal under precision farming using water soluble fertilizers as fertigation. The hybrid vegetable seeds supplied through KVK to a cost of Rs. 10,000/-. He raised the seedlings in shadenet using protrays and cocopeat. Water soluble fertilizers to a cost of Rs. 30,000/- and pesticides to a cost of Rs. 5,000/- were also supplied to him as subsidy. Interventions

In Precision farming, land was thoroughly prepared by disc plough and chisel plough was operated at 3 m interval. Cultivator was used to bring to fine tilth. Seedlings were raised in protrays to ensure good germination of seeds and good establishment of seedlings in main field. Water soluble fertilizers were applied as fertigation.

Impact Horizontal spread

Precision farming technologies were explained in Melathulakkankulam village by conducting demonstrations in five farmers field, trainings and field day. Awareness was created among the farmers.

Economic gains

The farmer obtained yield of 13 tonnes in chillies, 15 tonnes in tomato and 8 tonnes in brinjal in an are a 70 cents, 13 cents and 50 cents, respectively. Expenditure for cultivation of chillies was Rs.8200, tomato Rs.4,500 and brinjal Rs.3000. Net income of Rs. 1,09,300, Rs.1,50,500 and Rs.1,04,500 were obtained from chillies, tomato and brinjal respectively.

Сгор	Area (Acres)	Yield (t)	Net income (Rs)
Chillies 0.	70	13	109300
Tomato 0.	13	15	150500
Brinjal 0.	50	8	104500

Employment generation

Rural youth in Melathulukkankulam village were trained to do farming with the new technologies like fertigation and raising nursery in portrays. Their s kill in h andling pro trays and fertigation units were improved. Their attitude towards micro ir rigation was changed positively. If the labourers were further improved on their skills, they will be able to handle hi tech agriculture with ease.

7. Raising vegetable nursery in protrays

Background

Precision farming technologies were demonstrated in Virudhunagar district by Krishi Viygan Kendra, Aruppukottai, Virudhunagar during 2007 – 08. The farmers were taken to Krishnagiri and Dharmapuri district on ex posure visit and were explained a bout importance of drip irrigation, methods of raising nursery in protrays and maintenance in shade net. After seeing the shadenet at Paiyur, a farmer Shri. N.Srinivasan, residing at Melathulakkankulam village had erected a shadenet in his farm with local materials at a cost of Rs. 15,000/-.

Interventions

Chillies, tomato and brinjal seeds were sown in portrays with cocopeat. The portrays and cocopeat was purchased from Dharmapuri. While sowing, the portrays were filled with cocopeat and seeds were sown. Ten portrays were arranged one on the other and covered by a polythene sheet and kept as such for four days. On 5th day the polythene cover was taken out and water was sprinkled by rose cane. Afterwards the seedlings were maintained in the shade net.

Impact

Horizontal spread

Farmers had accepted the benefit of raising nursery in protrays rather than in nursery bed. Because of better establishment of seedlings in main field, farmers feel that gap filling is is much minimized as pro tray seedlings established well.

Economic gains

The farmer had raised 55,000 seedlings (Tomato Seedlings: 20,000, Brinjal seedlings: 15,000 and Chilli seedlings : 20,000) during last year using protrays with cocopeat. He sold the seedlings to farmers of his own village at a cost of 55 paise/seedling. By which he earned about Rs. 30,250/-. The expenditure for producing the seedlings was Rs.10,600/- and he had got a net income of Rs.19,650/-.

Crop No	. of seedlings produced	Cost of production (Rs.)	Gross income (Rs.)	Net income (Rs.)
Tomato 20	000	10600	30250	19650
Brinjal 15	000			
Chillies 20	000			

Employment generation

The seedlings are raised in shade net and sold to other farmers at a reasonable price. His labourers were skill trained in handling pro trays and nursery techniques. Many landless labourers have got employment opportunities.

- 10.D. Give details of innovative methodology or innovative technology of Transfer of Technology developed and used during the year
 - The Video Diagnostic Kit (VDK) software for diagnosing major, secondary and micro nutrient disorders in agricultural and horticultural crops were demonstrated to the extension officials.
 - The latest (2011) version DESSIFER software for soil testing has been installed and explained to extension officials and is being put to use for farmers benefit.
 - ✓ The web site on Agri portal Indg.in was made use of to the farmers in knowing the market details.
 - ✓ Agro advisory services were given to the farmers through SMS facilitated through net core
 - Knowledge on weather forecasting is done in all trainings and Accuweather.com was popularized for a ccessing we ather b ased information as it is vital in the rainfed areas.
 - ✓ The Precision farming was demonstrated in 100 ha in 100 farmers holdings with micro irrigation and fertigation.
 - SMS message service through mobile phones introduced and market information on two market and one commodity of farmers choice is sent through SMS.
 - ✓ E velanmai popularized among farmers.
 - ✓ Exposure visits to Coimbatore were arranged.
 - ✓ Under IAM WARM project IAMWARM on wheels rally was conducted and the District collector flagged off the function.
 - ✓ Wall Paintings were done to create awareness in villages
 - Under IAM WARM project video conferencing was used to communicate with the Project Director while appraising the technologies followed.
 - ✓ Under IAMWARM project final year B.Sc (Agri) students of AC&RI, Killikulam and KVK jointly involved under RAWE programme to popularize the semi dry rice cultivation techniques, SRI, pulse production technology and vermicompost production techniques.

10.E. Give details of indigenous technology practiced by the farmers in the KVK operational area which can be considered for technology development (in detail with suitable photographs)

S. No.	Crop / Enterprise	ITK Practiced	Purpose of ITK
1.	Banana	Panchgavya spray on bunches	Improves bunch weight
2.	Pulse	Seed treatment with red earth	Protection against pests

10.F. Indicate the specific training need analysis tools/methodology followed for

Identification of courses for farmers/farm women

- Village meetings
- Collectors grievances day questions
- Farmers' Scientists interaction meetings
- Farmers association requests
- SAC meeting
- Major crops and important pests
- Season based technology
- New technologies to be imparted
- Suitable dry farming practices which are not much use in the district and which need popularization
- PRA techniques.
- Night meetings
- Discussion with extension officials
- Discussion with SHG groups, Farmers Discussion Group convenors
- Discussion with local NGOs
- Monthly Meetings with KVK, SMS

Rural Youth

- Discussion withNehru Yuvak Kendra members
- Rural Youth Club meetings
- Feed back sessions of Field days and on campus trainings
- Agri Expo
- Symposiums
- Through NGOs Based on their requests

Inservice personnel

- Discussion with JDA / JDH
- SAC meeting
- Based on the requirements of sponsoring agencies
- Mandates of schemes in operation
- Review meetings of Special Secretary and Commissioner of Horticulture

10.G. Field activities

- i. Number of villages adopted Chidambarapuram Muthuramalingapuram Vadakkunatham Kattankudi Kanchanaickenpatti
- ii. No. of farm families selected
- iii. No. of survey/PRA conducted

Conducted one PRA survey on 7.12.2010 in collaboration with Regional Research Station, Aruppukkotai at Vadakkunatham village in which 75 farmers and 19 estension officaials and all staff of KVK participated.

10.H. Activities of Soil and Water Testing Laboratory

Status of establishment of Lab : : 2007 : 1. 2. Year of establishment List of equipments purchased with amount

SI. No	Name of the Equipment	Qty.	Cost
1 Di	gital pH Meter	1	7946
2 Di	gital Conductivity Meter	1	8300
3 Spe	ctrophotometer	1	89,454
4 FI	ame photometer	1	33,300
5 Automati	c KJEL PLUS Block digestion and Distillation system	1	1,76,43
6	ANAMED Electronic balance -6000 g Capacity	1	28,567
7	ANAMED Electronic balance -200 g capacity	1	92,007
8 Ho	t plate	1	1919
9 Ho	t air oven	1	7070
10 Grin	der	1	12,428
11 Re	frigerator	1	9950
12	Spring type projection screen	1	2100
13 EI	ectrical water bath	1	3400
14 W	ater still	1	28,418
15 Me	chanical shaker	2	44,494
	Total 16		545785

SI. No.	Name of Equipments	Qty.	Cost (Rs.in lakh)
	LAB SETUP		
1	Laboratory Island work table	1	0.60
2	Wall side work table	1	0.29
3 Inst	ument table	1	0.40
4	Chemical storage cabinet	1	0.43
5	storage cabinet – TSC H 925	1	0.20
6	storage cabinet – TSC-H 950	1	0.18
7	Wall mounded cupboard - TSC - 900 X30X600 mm	1	0.07
8	Wall mounded cupboard TSC 1000X300X600 mm	1	0.07
9	Observation stool – steel type	6	0.02
10	Observation stool – Cushion type – 350X350	2	0.02
11	Observation stool – Cushion type 450X450	5	0.03
12	Door arrangements for existing cupboards	1	0.25
13	Specimen observatory table	1	0.03
14 Pe	g board	1	0.07

Details of samples analyzed so far since establishment of SWTL:

Details	No. of Samples analyzed	No. of Farmers benefited	No. of Villages	Amount realized (Rs.)
Soil Samples	995 7	51	105	24875
Water Samples	550 3	46	81 55	00
Plant samples				
Manure samples				
Others (specify)				
Total	1545 1	097	186	30375

Details of samples analyzed during the 2010-11:

Details	No. of Samples analyzed	No. of Farmers benefited	No. of Villages	Amount realized (Rs.)
Soil Samples	235 1	76	25 58	75
Water Samples	215 2	15	23 21	50
Plant samples				
Manure samples				
Others (specify)				
Total	450 3	91	48 80	25

10.I. Technology Week celebration

Period of observing Technology Week: From to Total number of farmers visited : Total number of agencies involved : Number of demonstrations visited by the farmers within KVK campus :

Other Details Types of Activities No. of Number of Related crop/livestock technology Activities Farmers Gosthies Lectures organized Exhibition Film show Fair Farm Visit **Diagnostic Practicals** Supply of Literature (No.) Supply of Seed (q) Supply of Planting materials (No.) Bio Product supply (Kg) Bio Fertilizers (q) Supply of fingerlings Supply of Livestock specimen (No.) Total number of farmers visited the technology week

10. J. Interventions on drought mitigation (if the KVK included in this special programme) : Nil

A. Introduction of alternate crops/varieties

State	Crops/cultivars	Area (ha)	Number of beneficiaries

B. Major area coverage under alternate crops/varieties

Crops	Area (ha)	Number of beneficiaries
Oilseeds		
Pulses		
Cereals		
Vegetable crops		
Tuber crops		
Total		

C. Farmers-scientists interaction on livestock management

State	Livestock components	Number of	No.of participants
		interactions	
Total			

D. Animal health camps organized

State	Number of camps	No.of animals	No.of farmers
Tami Nadu	2	1000 birds	47
Total			

E. Seed distribution in drought hit states

State	Crops	Quantity (qtl)	Coverage of area (ha)	Number of farmers
Total				

F. Large scale adoption of resource conservation technologies

State	Crops/cultivars and gist of resource conservation technologies introduced	Area (ha)	Number of farmers
Total			

G. Awareness campaign

State	Meetings		Gosthies		Field d	ays	Farmers fa	air	Exhibition		Film s	now
	No.	No.of	No.	No.of	No.	No.of	No.	No.of	No.	No.of	No.	No.of
		farmers		farmers		farmers		farmers		farmers		farmers
					9	411			5	2100	2	96
Total												

PART XI. IMPACT

11.A.Impact of KVK activities (Not to be restricted for reporting period)

- 1. SRI in rice was popularized and presently more than 70% of the rice area in the district is under SRI which works to 21000 ha.
- 2. Maize thresher is popular among the farmers and almost 80% of the farmers thresh only using tractor driven thresher for maize harvest amounting to 13000 ha.
- 3. Mechanised seed drill sowing of maize, groundnut and cotton were demonstrated and so far 400 farmers have taken up sowing using the equipments from KVK.
- 4. Broad bed furrow former cum seed drill was demonstrated at Maraikulam village and in one season 60 acres in a contiguous block farmers adopted the technology.
- 5. Precision farming is being adopted in 220 ha through NADP scheme horticulture department and 120 ha by KVK
- 6. Aseel chicks were popularized for backyard poultry and the 10 farm fa milies in the whole hamlet in Kanjamanaickenpatti purchased 120 birds and are maintaining it.
- 7. Homestead incubator was demonstrated and one farmer has purchased the equipment in Kariappatti village.
- Mechanised seed drill sowing of maize was demonstrated and 60 farmers utilized the seed drill available at KVK and sowed their crop.
 Five farmers purchased the equipment from TNAU, Coimbatore based on the letter from KVK.
- 9. During exposure visit shade net nursery was shown to the farmers. Three farmers have installed a shade net in his land out of his own money and interest.
- 10. Nursery raising with protray was demonstrated under FLD One farmer has purchased the pro trays and started raising seedlings with cocopeat and selling to neighbouring farmers.
- 11. Maize hybrid Co(M)H 5 was demonstrated 200 farmers have raised the crop in the district.
- 12. Groundnut stripper was demonstrated and 4 farmers have purchased the unit from Coimbatore.
- 13. Bt cotton hybrid RCH2 Bt was demonstrated and so far 350 farmers in the district have raised the crop.
- 14. KBSH 41 sunflower hybrid was demonstrated by FLD and 100 farmers have raised the crop in the district.
- 15. Vermicomposting technology was demonstrated through training as well as by FLD and 250 farmers has purchased the poly silpaulin vermi bags own. They are producing the composts and selling to the farmers in adjoining hamlets.
- 16. Mushroom production technology was demonstrated through training and 25 farmers have erected the unit on their own and they are producing the mushroom and selling to the nearby petty shops.

11.B. Cases of large scale adoption

(Please furnish detailed information for each case)

- 1. Cotton SVPR 3 was demonstrated and now the district has more than 20% of cotton area under SVPR 2 with the combined efforts of the Department of Agriculture, Cotton Research Station, Srivilliputhur and KVK.
- 2. Cotton SVPR 2 was demonstrated and now the district has more than 60% of cotton area under SVPR 2 with the combined efforts of the Department of Agriculture, Cotton Research Station, Srivilliputhur and KVK.
- 3. Paddy SRI techniques was demonstrated and farmers were trained. Now, the area covered under SRI is more than 21000 ha.
- 4. Pulse DAP 2% spraying was demonstrated and more than 40% of the farmers are following the practice with the combined efforts of the Department of Agriculture, Cotton Research Station, Srivilliputhur and KVK.
- 5. Vamban Blackgram variety VBN (Bg)4 has spread in an area of more than 1500 ha.

Details of farm machineries purchased by farmers on cost through the Department during 2010-11

SI.No.	Name of the machinery/implement Qu	antity
1 T	ractor	04
2 Po	wer tiller	42
3 Ro	tovator	09
4 Pa	ddy combine harvestor	02
5 Po	wer weeder (< 8 HP) 07	
6	Power weeder (< 10 HP)	33
7	Power weeder (< 20 HP)	07
8 Pa	ddy drum seeder	06
9 Co	conut climber	12
10 Co	no weeder	15
11	Multi crop thresher	02
12 M	aize thresher cum husk sheller	01
13	Power operated sprayer	15
14 Fu	rro disc plough	02
15 M	ould plough	16
16	Duck foot cultivator	06
17 Ni	ne tyne cultivator	10

Source : Dept. of Agricultural Engineering, Virudhunagar

11.C. Details of impact analysis of KVK activities carried out during the reporting period.

- 1. SRI in rice was popularized and presently more than 70% of the rice area in the district is under SRI which works to 21000 ha.
- 2. Maize thresher is popular among the farmers and almost 80% of the farmers thresh only using tractor driven thresher for maize harvest amounting to 13000 ha.
- 3. Cumbu Napier fodder grass Co 4 given for 1 ha under FLD through KVK has spread in an area of 50 ha.
- 4. Vamban Blackgram variety VBN (Bg) 3 has spread in an area of more than 3000 ha.
- 5. Micro irrigation demonstrated through NADP Part II plan scheme has been increased to more than 1500 ha.
- 6. Inland fish culture in farms is being done in 12 farms.

PART XII - LINKAGES

12.A. Functional linkage with different organizations

Name of organization	Nature of linkage
District Colletorate, Virudhunagar	Member of District Agricultural Productivity Council
	Grievances day meeting participation.
	Monthly review meetings for ATMA, NADP and IAMWARM Schemes.
	PC is Micro irrigation committee member
	PC is National Food Security Mission committee Executive member.
	ATMA Programmes, Trainings Exposure Visits, Farmer Scientist
	interaction meetings are funded to KVK
	Rs 1.30 lakhs sanctioned in 2006-07
	Rs 1.50 lakhs sanctioned in 2007-08
	Rs 3.675 lakhs sanctioned in 2008-09
	Rs.0.70 lakhs sanctioned in 2009-10
National Medicinal Plants Board – GOI, Ayush, New Delhi	Scheme on Establishment of Medicinal Trees in Southern districts for Rs 6.6 lakhs.
Regional Research Station, Kovilangulam	Infra structure such as admin building, Training hall, farm, demo units
	and computers shared.
	Machineries and implements used.
	Resource persons for technical meetings are shared
Outline Descende Otaline Of States	Course teachers for the Diploma Agri Programme
Cotton Research Station, Srivilliputhur	Input purchase ,Resource persons for technical meetings Arranging meetings for the farmers of Srivilliputhur and Vatrap areas.
KVK, Madurai, Ramnad, Nammakal, Tuticorin,Kundrakudi	Input purchase. Sharing of resource persons for Training and
	exhibitions, interaction meetings.
	Exposure visits to Madurai and Ramnad.
Department of Agriculture, Virudhunagar	Participation in field days.
Department of Agnoundie, Andenanagai	Extension officials trainings
	Farmer Scientists interactions
	ATMA meetings
	Joint participation in IAM WARM project
	Joint field inspection at times of pest and disease out breaks.
	Resource persons for technical sessions
PWD, Virudhunagar	Resource persons IAMWARM meetings
Regulated Markets (Virudhunagar, Sattur, Aruppukottai, Srivilliputhur,	Collborative trainings conducted on Agrl. Marketing in Virudhunagar
Rajapalayam)	district.
	Resource persons for technical meetings
UT&RC, Rajapalayam	Resource persons for technical meetings in KVK
o rano, najapalayani	Conducting veterinary camps.
Fisheries department	Resource persons for technical meetings in KVK
Aavin, Virudhunagar	Resource persons for technical meetings related to fodder cultivation
	Farmers are identified for conducting FLD on Co 4 fodder cultivation
DHAN Foundation	Resource persons for technical meetings
Development Promotion Group (NGO)	Conducting training programmes
TANFED, Virudhunagar	For input purchase
Fertilisers and Pesticide Associations	for input purchase and Resource persons for technical meetings
Banks (Nationalized and other banks)	Arrangements are being made for availing loans related to Agriculture
NABARD, Virudhunagar	Resource persons for technical meetings
	One of the member in Farmers association formation Committee
World Bank	Implementing IAMWARM Scheme – Shenkottaiyar basin
All India Radio, Madurai	Programmes on Farm Radio sector
	broadcasting News related to KVK
Doordharshan, Chennai	Telecasting News related to KVK trainings

NB The nature of linkage should be indicated in terms of joint diagnostic survey, joint implementation, participation in meeting, contribution received for infrastructural development, conducting training programmes and demonstration or any other

12.B. List special programmes undertaken by the KVK and operational now, which have been financed by State Govt./Other Agencies

Name of the scheme	Date/ Month of initiation	Funding agency	Amount (Rs. in lakhs)
АТМА	March, 2011	GOI & State Department of Agriculture	0.70
NADP-PF	April 2010	GOI and GOTN	33.00
TN –IAMWARM	April 2010	World Bank	6.70
NADP-QSP Training	April 2010	GOI and GOTN	1.495

12.C. Details of linkage with ATMA

a) Is ATMA implemented in your district Yes/ No

If yes, role of KVK in preparation of SREP of the district?

Coordination activities between KVK and ATMA during 2010-11

S. No.	Programme	Particulars	No. of programmes attended by KVK staff	No. of programmes Organized by KVK	Other remarks (if any)
01	Meetings				
02	Research projects				
03	Training programmes				
04	Demonstrations				
05	Extension Programmes				
	Kisan Mela				
	Technology Week				
	Exposure visit				
	Exhibition				
	Soil health camps				
	Animal Health				
	Campaigns				
	Others (Pl. specify)				
06	Publications				
	Video Films				
	Books				
	Extension Literature				
	Pamphlets				
	Others (Pl. specify)				
07	Other Activities (Pl. specify)				
	Watershed approach				
	Integrated Farm Development				
	Agri-preneurs development				

12.D. Give details of programmes implemented under National Horticultural Mission : Nil

S. No.	Programme	Nature of linkage	Funds received if any Rs.	Expenditure during the reporting period in Rs.	Constraints if any

12.E. Nature of linkage with National Fisheries Development Board : Nil

S. No.	Programme	Nature of linkage	Funds received if any Rs.	Expenditure during the reporting period in Rs.	Remarks

12.F. Details of linkage with RKVY : Nil

S. No.	Programme	Nature of linkage	Funds received if any Rs.	Expenditure during the reporting period in Rs.	Remarks

12. G Kisan Mobile Advisory Services

Month	No. of SMS sent	No. of farmers to which SMS was sent	No. of feedback / query on SMS sent
April 2010			
May			
June			
July			
August			
September			
October	40 25	0	
November	34 26	0	
December	30 26	0	
January 2011	20 27	0	
February			
March			
Total	124 1	040	

PART XIII- PERFORMANCE OF INFRASTRUCTURE IN KVK

13.A. Performance of demonstration units (other than instructional farm)

		Year of	Area	Details of	of production		Amoun	t (Rs.)	
SI. No	. Demo Unit	establishment	(ha)	Variety Produ ce Qty.		Cost of inputs Gross income		Remarks	

13.B. Performance of instructional farm (Crops) including seed production

Name	Date of	Date of	Area (ha)	De	tails of production		Amoun	nt (Rs.)	
of the crop	sowing	ving harvest		Variety	Type of Produce	Qty.	Cost of inputs	Gross income	Remarks
Cereals									
Pulses									
Oilseeds									
Fibers									
Spices & Plantation	on crops								
Floriculture									
Fruits									
Vegetables									
Others (specify)	Others (specify)								

13.C. Performance of production Units (bio-agents / bio pesticides/ bio fertilizers etc.,)

SI.	Name of the	Name of the		nt (Rs.)	
No.	Product	Qty	Cost of inputs	Gross income	Remarks

13.D. Performance of instructional farm (livestock and fisheries production)

SI.	Name	Details of production			Amour		
No	of the animal / bird / aquatics	Breed	Type of Produce	Qty.	Cost of inputs	Gross income	Remarks

13.E. Utilization of hostel facilities : Yet to be inaugurated

Accommodation available (No. of beds)

Months	No. of trainees stayed	Trainee days (days stayed)	Reason for short fall (if any)
October 2008			
November 2008			
December 2008			
January 2009			
February 2009			
March 2009			
April 2009			
May 2009			
June 2009			
July 2009			
August 2009			
September 2009			

13.F. Database management

S. No	Database target	Database created
1.	OFT details with result for 2006-2010	Completed
2.	FLD details with result for 2006-2010	Completed
3.	Farmers details Address and Ph.No	Completed
4.	Farmers database in crop wise	Under progress
5.	Weather parameters of the district.	
	(for a minimum period of twenty years)	Completed
6.	District profile of Virudhunagar	Completed
7.	Details of soil profile	Completed
8.	Detailed cropping pattern (for a minimum period of ten years)	Completed
9.	Area, production and productivity of major crops	Completed
10.	Details of livestock wealth in the district	Under progress
11.	Production and productivity of livestock produces	Yet to be initiated
12.	Area under irrigation from different sources	Completed
13.	Any others relevant to district	Completed

13.G. Details on Rain Water Harvesting structure and micro-irrigation system : Nil

Amount sanction (Rs.)	Expenditure (Rs.)	Details of infrastructure created / micro irrigation system etc.						Quantity of water harvested in '000 litres	Area irrigated / utilization pattern
			No. of Training programmes	No. of Demonstration S	No. of plant materials produced	Visit by farmers (No.)	Visit by officials (No.)		

PART XIV - FINANCIAL PERFORMANCE

14.A. Details of KVK Bank accounts

Bank account	Name of the bank	Location	Branch code	Account Name	Account Number	MICR Number	IFSC Number
With Host Institute	SBI	Aruppukottai	809	The Training Organiser, KVK, Virudhunagar HQ, Aruppukottai	30043975984		
With KVK					3043975688(RF)	-	SBIN 0000809

14.B. Utilization of funds under FLD on Cotton (Rs. in Lakh)

S. No	Items / Head	Opening balance if any	Remittance ZPD Bangalore	by VIII	Actual expenditure dubitable to Council A/C	Closing balance if any	Remarks
1	Production Technology						
	a. Essential inputs				69935		
	b. POL, hiring vehicle, Kisan melas, printed materials, reports, demonstration boards				30000		
	Total	+336			99935	(-)99599	
2.	Farm Implements – 75 ha						
	a. New equipments		-		-	-	
	b. Contingencies	-	-		-	-	
	Total						

S. No.	Particulars	Sanctioned	Released	Expenditure
A. Rec	urring Contingencies		1 1	
1	Pay & Allowances	4500000		6595812
2	Traveling allowances	125000		124999
3	Contingencies		1 1	
A	Stationery, telephone, postage and o ther expenditure on office running, p ublication of N ewsletter a nd li brary ma intenance (Purchase of News Paper & Magazines)	300000		300016
В	POL, repair of vehicles, tractor and equipments	146000		145738
С	Meals/refreshment for trainees (ceiling upto Rs.40/day/trainee be maintained)	106000		105610
D	Training mat erial (posters, c harts, dem onstration material including chemicals etc. required for conducting the training)	50000		49565
Ε	Frontline demonstration except oilseeds and pulses (minimum of 30 demonstration in a year)	202000		201514
F	FLD on special pulses programme	44000		43631
G	On farm test ing (on need bas ed, location s pecific and newly generated information in the major p roduction systems of the area)	83000		79953
Н	Training of extension functionaries	9000		9000
/	Maintenance of buildings	-		-
J	Extension Activities	30000		29990
K	Farmer's Field School	25000		24833
L	Library (Purchase of assets like books & journals)	5000		4835
	TOTAL (A)	5625000		7715496
B. Non	-Recurring Contingencies			
1	Equipments including SWTL & Furniture			
a. F	urniture and furnishing	700000		699694
b. L	aser guider and leveller	500000		340000
c. Ge	nerator	100000		211220
d. E	PABX System	50000		49820
e.	Computer and accessories	75000		123960
2	Works			
a.	Administrative building (II and final installment)	3700000		3700000
b.	Farmers hostel (II and final installment)	2000000		2000000
3	Library (Purchase of assets like books & journals)	10000		9912
4	Vehicle (Four wheeler/Two wheeler, please specify)	-		-
TOTAL		7135000		7134606
	OLVING FUND	-		
	D TOTAL (A+B+C)	1,27,60,000	1,25,95,888	1,48,50,102

14.D. Status of revolving fund (Rs. in lakh) for the three years

Year	Opening balance as on 1 st April	Income during the year	Expenditure during the year	Net balance in hand as on 1 st April of each ye,,,ar
April 2008 to March 2009	52074 65	006	13150	103930
April 2009 to March 2010	103930 89	399	9408	183921
April 2010 to March 2011	183921 93	734	100187	177468

15. Details of HRD activities attended by KVK staff during 2010-11

Name of the staff	Designation	Title of the training/Seminar/Conference programme	Institute where attended	Dates
Mr.M.Rajendran S	MS(Plant protection)	Papaya Mealybug	National Bureau of Agricultural Important Insects, Bangalore	30.10.10 to 31.10.10
		IPDM strategies for high value crops	DOEE, TNAU, Coimbatore	24.03.11 to 25.03.11
Dr. D. Jegadeeswari	SMS (Soil Science)	Scientific Tamil in Agriculture	AC& RI, Madurai	7.10.10 to 8.10.10
		Processing of millet b ased convenience foods	V.V. Vanniape rumal College fo r Wo men, Virudhunagar	30.08.10
		Strengthening gender perspective in Agriculture and Extension	TANUVAS chennai	24.01.11 to 25.01.11
		Soil health improvement for enhancing crop productivity	TNAU, Coimbatore	17.03.11 to 18.03.11
Dr.R.Jayashree S	MS (ENS)	Team work and building alliences for development	KKID, Man karai, Coimbatore	29.03.10 to 31.03.10
		Scientific Tamil in Agriculture	AC& RI, Madurai	7.10.10 to 8.10.10
		Renewable energy	Gandhigram Ru ral Institute, Gandhigram	1.12.10 to 22.12.10
Dr.S.Rathika SM	S (Agronomy)	Financial management	Anna Institute of Management, Chennai	18.03.10
		Team work and building alliences for development	KKID, Mankarai, Coimbatore	29.03.10 to 31.03.10
		Special Procurement training	Seminar Hall, Hotel North Gate, Madurai-2	4.05.10
		Upscaling of e-Velanmai	CARDS, TNAU, Coimbatore	17.05.10
		Technology demonstration for harnessing pulses productivity	MPKV, Rahuri, Maharashtra	4.06.10 to 5.06.10
		Scientific Tamil in Agriculture	AC& RI, Madurai	7.10.10 to 8.10.10

		Roundup rea dy f lex co tton technology	TNAU, Coimbatore	28.10.10
		Micro irrigation	M/s. Jai n Irr igation, Udumalpet	19.11.10 to 20.11.10
		Weather bas ed agro advisory services	DOEE, TNAU, Coimbatore	30.03.11 to 31.03.11
Dr.S.Muthuramu S	MS (Plant Breeder)	Team work and building alliences for development	KKID, Mankarai, Coimbatore	29.03.10 to 31.03.10
		Third National Congress on "Plant Breeding and Genetics"	CPBG, TNAU, Coimbatore	7.07.10 to 9.07.10
		Scientific Tamil in Agriculture	AC& RI, Madurai	7.10.10 to 8.10.10

16. Please include any other important and relevant information which has not been reflected above (write in detail).

SUMMARY FOR 2010-11

I. TECHNOLOGY ASSESSMENT

Summary of technologies assessed under various crops

Thematic areas	Crop		No. of trials
Integrated Nutrient Management	Rice	Assessment of rice varieties for productivity and market preference	5
Varietal /Hybrid Evaluation	Blackgram	Assessment of blackgram varieties for enhancing productivity by floral retension	5
	Redgram	Assessment crop establishment technique in red gram	5
	Chilli	Assessment of chillie varieties for yield and marketablity as spice	5
Integrated Pest Management			
Integrated Crop Management	Redgram	Assessment of different crop establishment techniques in Redgram	3
	blackgram	Mini mobile sprinkler irrigation in blackgram	2
Integrated Disease Management			
Small Scale Income Generation Enterprises			
Weed Management			
Resource Conservation Technology			
Farm Machineries	Groundnut	Assessment of mechanised sowing in groundnut	5
Integrated Farming System			
Seed / Plant production			
Value addition			
Drudgery Reduction			
Storage Technique			
Others (Pl. specify)			
Total			30

Summary of technologies assessed under livestock

Thematic areas	Name of the livestock enterprise	Name of the technology assessed	No. of trials
Disease Management	Poultry	Control of Ranikhet disease in desi chicken	1000 birds
Evaluation of Breeds			
Feed and Fodder management			
Nutrition Management	Cattle	Mangement of post partum anestrum in crossbred cows	50 animals
Production and Management			
Others (PI. specify)			
Total	÷	•	1050

Summary of technologies assessed under various enterprises - Nil

Thematic areas	Enterprise	Name of the technology assessed	No. of trials

Summary of technologies assessed under home science .: Nil

Thematic areas	Enterprise	Name of the technology assessed	No. of trials

II. TECHNOLOGY REFINEMENT

Summary of technologies refined under various crops : Nil

Thematic areas	Crop	Name of the technology refined	No. of trials
Integrated Nutrient Management			
Varietal Evaluation			
Integrated Pest Management			
Integrated Crop Management			
Integrated Disease Management			
Small Scale Income Generation Enterprises			
Weed Management			
Resource Conservation Technology			
Farm Machineries			
Integrated Farming System			
Seed / Plant production			
Value addition			
Drudgery Reduction			
Storage Technique			
Others (PI. specify)			
Total			

Summary of technologies assessed under refinement of various livestock Nil

Thematic areas	Name of the livestock enterprise	Name of the technology refined	No. of trials
Disease Management			
Evaluation of Breeds			
Feed and Fodder management			
Nutrition Management			
Production and Management			
Others (PI. specify)			
Total			

Summary of technologies refined under various enterprises : Nil

Thematic areas	Enterprise	Name of the technology assessed	No. of trials

Summary of technologies refined under home science : Nil

Thematic areas	Enterprise	Name of the technology assessed	No. of trials

III. FRONTLINE DEMONSTRATION

Cotton

Frontline demonstration on cotton

Creat	Thematic	technology	No. of	No. of	Area	Area Yield (q/ha		%	*Economics of demonstration (Rs./ha)				*Economics of check (Rs./ha)			
Сгор	Area	demonstrated	KVKs	Farmers	(ha)	Demonstration	Check	Increase	Gross Cost	Gross Return	Net Return	** BCR	Gross Cost	Gross Return	Net Return	** BCR
Cotton																
Rainfed I	CM	SVPR-4	1	12	5	10.92	8.35	31.0	20500	54608	34108	2.66	21000	41715	20715	1.98
Irrigated I	CM	SVPR-4	1	13	5	12.55	9.25	35.6	29100	62750	41650	2.97	22500	46250	23750	2.05
Rainfed IC	М	KC 3	1	5	2	10.52	8.25	32.7	19400	54750	35350	2.82	20100	41250	21150	2.05
Irrigated I	CM	KC 3	1	5	2	12.87	9.50	35.4	21000	64350	43350	3.06	21000	47500	26500	2.26
Rain fed	ICM	Bunny BT	1	5	2	30.00	27.00	28.0 20	400	150500	130100	7.37	19200	135000	115800	7.00
Irrigated I	CM	Bunny BT	1	10	4	34.00	31.50	39.6	21700	176000	148300	7.83	20600	157500	136900	7.60
Total				50	20	18.48 15.64		33.72	22017	93826	72143	4.45	20733	78203	57469	3.82

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone. ** BCR= GROSS RETURN/GROSS COST

Other crops

Crop Thematic area		Name of the technology	No. of	No. of	Area	Yield (d	q/ha)	% change in yield	Other pa	rameters	*Ecor	nomics of c (Rs./l	lemonstrat na)	ion	*[Economics (Rs./I		
		demonstrated	KVKs	Farmer	(ha)	Demons ration	Check		Demonstration	Check	Gross Cost	Gross Return	Net Return	** BCR	Gross Cost	Gross Return	Net Return	** BCR
Cereals	Hybrid introduction	Introduction of Co(R)H 3 rice hybrid uner SRI		12 5		6.94	5.4	32	No.of productive tillers/ $m^2 - 47$, Panicle / $m^2 - 236$, 1000 grain weight (g) - 22.7	No.of productive tillers/m ² – 36, Panicle / $m^2 - 202$, 1000 grain weight (g) – 19	20000 6	9 400 5	5200	3.47	20000	54000	34000	2.84

	Drought tolerant rice variety introduction	Introduction of Semi dry rice variety Anna	10 2		39.2	33.6	16.7	Total tillers/m ² – 277, Productive tillers/m ² – 253, No. of grains/panicle – 121, Test weight (g) – 23.4	Total tillers/m ² – 256, Productive tillers/m ² – 224, No. of grains/panicle – 102, Test weight (g) – 26.3	19820 4) 867 2	1047	2.06	19521	33582	14061	1.72
	Farm machanisation in rice	Popularisation of fully mechanized cultivation of rice	7 2		33	16.2	50.9	Total tillers/m ² – 233, Productive tillers/m ² – 220, No. of grains/panicle – 108, Test weight (g) – 25.6	Total tillers/m ² – 212, Productive tillers/m ² – 197, No. of grains/panicle – 92.6, Test weight (g) – 21.3	19000 5	000 3	1000	2.61	15000	30000	15000	2.00
Millets	Variety introduction	Introduction of bajra variety Co(Cu) 9	13 5	.2	23.5	15.3	34.8	Plant height (cm) – 189, No.of tillers – 6, Length of earhead (cm) – 33, Breadth of earhead (cm) – 8.9, 1000 grain weght (g) – 8.9	Plant height (cm) $-$ 133, No.of tillers $-$ 4, Length of earhead (cm) - 16.4, Breadth of earhead (cm) - 4.3, 1000 grain weght (g) $-$ 5.3	4500 2	3500	19000	5.20	4000	15300	11300	3.82
	Variety introduction	Popularisation Kudiraivali variety Co 2	14	5.6 17.	7	9.8	44.6	No.of earheads/m ² – 36, Panicle length (cm) – 22, Test weight (g) - 3	No.of earheads/m ² – 18, Panicle length (cm) – 18.3, Test weight (g) – 2.1	3000 17	700	14700	5.90	3000	9800	6800	3.20

Oilseeds	ICM I	ntegrated Crop Managemnt in Sesamum	6.8	17	6.3 4.	2	33.3	Plant height (cm) – 99.1, No.of pods/plant - 33, Pod length (cm) - 2.89, 1000 grain weight – 3.96	Plant height (cm) – 73.6, No.of pods/plant - 24, Pod length (cm) - 2.2, 1000 grain weight – 2.78	4900 2	5200	20300	5.1	4200	21000	16800	5
	Mechanised sowing	Mechanised sowing i n Groundnut	5	10	9.5 6.	1	35.8	Germination (%) – 89, Population/m ² – 33, No.of filled pods / plant - 18	Germination (%) – 73, Population/m ² – 26, No.of filled pods / plant - 12	20580 6	1 800 4	1200	3.0	19300	36600	17300	1.89
	ICM In	troduction of castor hybrid YRCH 1	5	12	18.5 1	0.5	43	No of capsules per plant – 749, 100 seed weight – 26.5, Plant height (cm)- 151	No of capsules per plant – 615, 100 seed weight – 14.3, Plant height (cm)- 135	8970 55	5 750	46780	6.21 9	500	42300	32800	4.45
	ICM P	opularisaton of Sunflower hybrid KBSH 1	5	12	16.1 1	4.82	9.0	Plant height (cm) – 140, Head diameter(cm) – 16.5, Test weight (g) – 5.72	Plant height (cm) – 135.8, Head diameter(cm) – 14.3, Test weight (g) – 5.6	7226 1	9320	12094	2.67	7192	17780	10588	2.47
Pulses	Production technology	Popularisation of VBN 3 Blackgram	5 10		7.05 5	.8	21.6	Population/m ² - 31, No.of pods/plant - 32, No. of seeds/pod - 8, Test weight (g) - 4.4	Population/m ² - 29, No.of pods/plant - 28, No. of seeds/pod - 7, Test weight (g) - 3.9	9422 2	5207	15785	2.68	8697	18429	9732	2.11

	Production technology	Popularisation of VB N 3 greengram	5 12	7.1 6.	1	17.0	Plant height (cm) – 62, No.of pods/plant – 12, Test weight (g) – 3.4	Plant height (cm) – 67, No.of pods/plant – 10, Test weight (g) – 3.2	9851 2	7107	17255	2.75	9804	23256	13452	2.37
Vegetables																
Flowers																
Ornamental																
Fruit	Horticulture High	density planting in Mango	2 10	Trial is in			Plant height (cm) - 35	Plant height (cm) - 24								
Truit		Mango		progress												
Spices and condiments	Varietal evaluation	Popularisation of Co(5) Onion	2 5	39.75	26.00 3	5	Plant height (cm) – 30, No of tillers per plant – 9.0, No of bulbs per plant – 7.6	Plant height (cm) – 26, No of tillers per plant – 6.0, No of bulbs per plant – 5.0	30000 1	0000	70000	3.32	35000	82000	47000	2.34
	Varietal evaluation	Populaisation of Arka kalyan Bellary Onion	2 5	146 11	5	22	Plant height (cm) – 35, No of tillers per plant – 2.2, No of bulbs per plant – 1.4	Plant height (cm) – 22, No of tillers per plant – 1.5, No of bulbs per plant – 1.0	35000	175200	140200 5	i. 00 3	90000	138000	990000	3.05
Commercial																

Hybrid popularisation	Popularisation of Co(CN) 4 Cumbu Napier hybrid grass + egume fodder desmanthus	c	20 cents	20	2545 21	31	19.4	Plant height (cm) – 185.3, No. of tillers/clump - 27	Plant height (cm) – 168.5, No. of tillers/clump - 20	62444	143553	81109	2.30	50978 9	5 888 4	4 910	1.88
/ariety ntroduction	Introduction of Co(GG) 3 Guinea grass	(10 cents	12	3180 21	30	49	Plant height (cm) – 222.9, No. of tillers/clump - 23	Plant height (cm) – 197.7, No. of tillers/clump - 18	152520	397500	244980 2	. 61 1	50800	266250	115450	1.77
									-								
	Total							•	•								
	/ariety ntroduction	Sopularisation Co(CN) 4 Cumbu Napier hybrid grass + egume fodder desmanthus /ariety Introduction of Co(GG) 3 Guinea grass ////////////////////////////////////	Sopularisation Co(CN) 4 Cumbu Napier hybrid grass + egume fodder desmanthus /ariety Introduction of Co(GG) 3 Guinea grass /ariety Introduction of Co(GG) 3 Guinea grass ////////////////////////////////////	vopularisation Co(CN) 4 Cumbu Napier hybrid grass + egume fodder desmanthus 20 cents /ariety Introduction of Co(GG) 3 Guinea grass 10 cents ////////////////////////////////////	Dopularisation Co(CN) 4 Cumbu Napier hybrid grass + egume fodder desmanthus 20 cents 20 /ariety Introduction of Co(GG) 3 Guinea grass 10 cents 12 Image: Solution of Co(GG) 3 Guinea grass Image: Solution of Co(GG) 3 cents 12 Image: Solution of Co(GG) 3 	DopularisationCo(CN) 4 Cumbu Napier hybrid grass + egume fodder desmanthus20 cents20 202545 21/ariety Introduction of Co(GG) 3 Guinea grass10 cents123180 21/ariety Introduction10 Co(GG) 3 Guinea grass10 cents123180 21///>Contex10 cents12100 cents12100 cents///>Contex10 cents12100 cents12100 cents///>Contex10 cents10 cents10 cents100 cents100 cents//>Contex10 cents10 cents100 cents100 cents100 cents//>Contex10 cents10 cents100 cents100 cents100 cents//>Contex10 cents10 cents100 cents100 cents100 cents//>Contex10 cents100 cents100 cents100 cents100 cents//>Contex10 cents100 cents100 cents100 cents100 cents//>Contex100 cents100 cents100 cents100 cents100 cents//>Contex100 cents100 cents100 cents100 cents100 cents//>Contex100 cents100 cents100 cents100 cents100 cents//>Contex100 cents100 cents100 cents100 cents100 cents//>Contex	DopularisationCo(CN) 4 Cumbu Napier hybrid grass + egume fodder desmanthus20 cents20 202545 2131/ariety Introduction of Co(GG) 3 Guinea grass10 cents123180 2130////>123180 213030///>12121210 cents10 cents///>10 Guinea grass10 cents123180 21///>101210 cents10///>10121010///>10121010///>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//>10101010//	DopularisationCo(CN) 4 Cumbu Napier hybrid grass + egume fodder desmanthus20 cents20 202545 213119.4/ariety ntroductionIntroduction of Co(GG) 3 Guinea grass10 cents123180 213049	NopularisationCo(CN) 4 Cumbu Napier hybrid grass + egume fodder desmanthus20 cents20 202545 213119.4(cm) - 185.3, No. of tillers/clump - 27/ariety ntroductionIntroduction of Co(GG) 3 Guinea grass10 cents123180 213049Plant height (cm) - 22.9, No. of tillers/clump - 23	Dopularisation Napier hybrid grass + egume fodder desmanthus20 cents20 cents2545 213119.4(cm) - 185.3, No. of tillers/clump - 27(cm) - 185.3, No. of tillers/clump - 20/ariety ntroductionIntroduction of Co(GG) 3 Guinea grass10 cents123180 213049Plant height (cm) - 222.9, No. of tillers/clump - 23Plant height (cm) - 197.7, No. of tillers/clump - 18/ariety ntroductionIntroduction of Co(GG) 3 Guinea grass10 cents123180 213049Plant height (cm) - 222.9, No. of tillers/clump - 23Plant height (cm) - 197.7, No. of tillers/clump - 18////>IntroductionIntroduction of Co(GG) 3 Guinea grass10 cents123180 213049Plant height (cm) - 222.9, No. of tillers/clump - 23Plant height (cm) - 197.7, No. of tillers/clump - 18///>IntroductionIntroductionIntroductionIntroductionIntroductionIntroduction//Introduction	opularisation Napier hybrid grass + egume fodder desmanthus 20 cents 20 cents $2545 21$ 31 19.4 $(cm) - 185.3$, No. of tillers/clump - 27 $(cm) - 168.5$, No. of tillers/clump - 20 62444 /ariety ntroduction of Co(GG) 3 Guinea grass 10 cents 12 $3180 21$ 30 49 Plant height (cm) - 222.9, No. of tillers/clump - 23 Plant height (cm) - 197.7, No. of tillers/clump - 18 152520 20 20 20 20 20 20 20 20 20 20 20 20 20 $21380 21$ 30 49 90 10 (cm) - 222.9, No. of tillers/clump - 18 152520 <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\frac{1}{1} 1$</td></td<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{1}{1} 1$

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone. ** BCR= GROSS RETURN/GROSS COST

Liv	vestock																	
Catagory	Thematic	Name of the	No. of	No. of	No.of	Major pa	rameters	% change in major parameter	Other pa	arameter	*Eco	nomics of (Re		ation	*	Economics (Rs	s.)	
Category	area	technology demonstrated	KVKs	Farmer	units	Demons ration	Check		Demons ration	Check	Gross Cost	Gross Return	Net Return	** BCR	Gross Cost	Gross Return	Net Return	** BCR
Dairy																		
Daulia	Poultry Po	pularisation of CARI		40	20	70 (Total eggs laid)	39 Total eggs laid)	51	Weight gain – 3.33 kg after 6 months, Total eggs	Weight gain – 2.54 kg after 6 months, Total eggs	1320 3	5 00	1980	3.02	1950	690	1260	2.84
Poultry				40	units	,	,		laid - 70	laid - 39								
Rabbitry																		
Pigerry																		
Sheep and goat	Goat Po	pularisation of Mi neral sallt lick cake		25	250 goats	350 ml/day	200 ml/day	43	Intercalving period (months) – 5.4, No.of calves / calving – 2.8	Intercalving period (months) – 7.5, No.of calves / calving – 1.0	4800 1	6 000	11200	3.33	5000	11000	6000	2.20
Duckery																		

Total																
	Total	Total	Total	Total	Image: Total Image: Total Image: Total Image: Total	Image: Total Image: Total Image: Total Image: Total	Total Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone. ** BCR= GROSS RETURN/GROSS COST

Fisheries

Catagony	Thematic	Name of the	No. of	No. of	No.of	Major pa	rameters	% change in major parameter	Other par	rameter	*Econo	mics of de	monstratio	n (Rs.)	*	Economics (Rs		
Category	area	technology demonstrated	KVKs	Farmer	units	Demons ration	Check		Demons ration	Check	Gross Cost	Gross Return	Net Return	** BCR	Gross Cost	Gross Return	Net Return	** BCR
Common																		
carps																		
Mussels																		
Ornamental																		
fishes																		
Others																		
(pl.specify)																		
		Total						•						-				

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone. ** BCR= GROSS RETURN/GROSS COST

Other enterprises

136

Catagory	Name of the technology	No. of	No. of	No.of	Major pa	rameters	% change in major parameter	Other par	rameter	*Econo	mics of de or Rs	monstratio ./unit	n (Rs.)	×	Economic (Rs.) or	s of check Rs./unit	
Category	demonstrated	KVKs	Farmer	units	Demons ration	Check		Demons ration	Check	Gross Cost	Gross Return	Net Return	** BCR	Gross Cost	Gross Return	Net Return	** BCR
Oyster																	
mushroom																	
Button																	
mushroom																	
Vermicompost																	
Sericulture																	
Apiculture																	
Others																	
(pl.specify)																	
	Total							•								1	

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone. ** BCR= GROSS RETURN/GROSS COST

Women empowerment

Category	Name o f technology	No. of KVKs	No. of demonstrations	Name of observations	Demonstration Check	
Women						
Pregnant						
women						
Adolescent Girl						
Other women						
Children						
Neonats						
Infants						
Children						

Farm implements and machinery

Name of the	Crop	Name of the technology	No. of Demo	No. of Farmer	Area (ha)	Labo requiren Mand	nent in	% change in major parameter	Labor reduction (man days)	Cost reduction (Rs./ha or Rs./Unit ect.)
implement		demonstrated	Demo	Faillei	(11d)	Demons ration	Check			
Chaff cutter	Cumbu Napier	Popularisation of Chaff cutter	3 13	5	-	70 10	5	50	35 99	976
Homestead incubator	Poultry	Homestead incubator for desi egg hatching	12	5	-	11		-		

Additional information

Name of	Cost of the	Name of the technology	No.	Area cover	requir	oour ement ndays	%	Savin gs in labou	den	*Econor nonstratio		ia)	*E(conomics (Rs./	s of cheo /ha)	ck
the impleme nt	imple ment in Rs.	demonstrat ed	of De mo	ed\ under demo in ha	De mo	Che ck	sav e	r (Rs./h a)	Gro ss cost	Gros s Retur n	Net Retur n	** BC R	Gro ss Cost	Gros s Retur n	Net Retur n	** BC R
Chaff		Popularisati							750	2625	1874	3.5	624	1750	1125	2.8
cutter	12580	on of Chaff cutter	3		70	105	50	3500	24	00	76	0	44	00	56	0
Homest		Homestead														
ead incubato r	30000	incubator for desi egg hatching	1		1	1	-	-	500 2	4 50	1950	4.9	500 1	8 75	1375	3.7 5

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone. ** BCR= GROSS RETURN/GROSS COST

Other enterprises

Demonstration details on crop hybrids

Сгор	Name of the Hybrid	No. of farmers	Area (ha)	Yield (kg/l para	ha) / ma meter	jor		Economic	s (Rs./ha)	
				Demonst- ration	Local check	% change	Gross Cost	Gross Return	Net Return	BCR
Cereals										
Bajra										
Maize										
Rice	COR(H)3	12 5		6.94	5.4	32	20000	69400	55200	3.47
Sorghum										
Wheat										
Others (pl.specify)										
Total										
Oilseeds						40			40700	
Castor	YRCH 1	12	5	18.5 1	0.5	43	8970 55	750	46780	6.21
Mustard	<u> </u>				<u> </u>					
Safflower										
Sesame										
Sunflower	KBSH 41	12	5	16.1 14.	82	9.0 72	26	19320	12094	2.67
Groundnut										
Soybean										
Others (pl.specify)										
Total										
Pulses										
Greengram										
Blackgram										
Bengalgram										
Redgram										
Others (pl.specify)										
Total										
Vegetable crops	+									
Bottle gourd	+ +									
Capsicum										
Others (pl.specify)	1 1									
<u>, , , , , , , , , , , , , , , , , , , </u>										
Total										
Cucumber										
Tomato										
Brinjal										
Okra										
Onion				. <u></u>						
Potato										
Field bean										

Others (pl.specify)										
Total										
Commercial crops										
Sugarcane										
Coconut										
Others (pl.specify)										
Total										
Fodder crops	Co(CN)4	20 0.	08	2545	2131	19.4	62444	143553	81109	2.30
Maize (Fodder)										
Sorghum (Fodder)										
Others (pl.specify)										
Total		56	15.08							

IV. Training Programme

Farmers' Training including spons	ored training programmes (On campus)	
Tarmers Training including spons	oreu training programmes (on campus)	

Area of training Courses Courses Courses Course Course <thcourse< th=""></thcourse<>		No. of				No.	of Partici	pants			
Crop ProductionIndexFemaleTotalMaleFemaleTot	Area of training										
Weed ManagementImage of the second secon	Crop Production		Male	Female	Total	Male	Female	Total	Male	Female	Total
Resource Conservation Technologies Image Image <thimage< th=""> Image Image</thimage<>											ļ
Cropping SystemsImage of the systemsImag	•										
Crop DiversificationImage and FarmingImage and Farming <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ļ</td></th<>											ļ
Integrated FarmingImageI											
Micro Irrigation/IrrigationImage of the second											
Seed production 2.7 53 60 - - 7 53 Nursery management 18 253.1 84 437 49 58 107 302.2 2 2 Soil and Water Conservation 18 253.1 84 437 49 58 107 302.2 2 2 Soil and Water Conservation 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
Nursery management Image of the second											
Integrated Crop Management 18 253 1 84 437 49 58 107 302 24 2 Soil and Water Conservation <td< td=""><td>·</td><td>27</td><td></td><td>53</td><td>60</td><td>-</td><td>-</td><td>-</td><td>7</td><td>53</td><td>60</td></td<>	·	27		53	60	-	-	-	7	53	60
Soil and Water ConservationImage and the second											
Integrated Nutrient ManagementImagement </td <td>Integrated Crop Management</td> <td>18</td> <td>253 1</td> <td>84</td> <td>437</td> <td>49</td> <td>58</td> <td>107</td> <td>302 24</td> <td>2</td> <td>544</td>	Integrated Crop Management	18	253 1	84	437	49	58	107	302 24	2	544
Production of organic inputsImage: section organic inputs </td <td>Soil and Water Conservation</td> <td></td>	Soil and Water Conservation										
Others (pl.specify)Image: Specify (pl.specify)Image: Specify (pl.specify)Image: Specify (pl.specify)HorticultureImage: Specify (pl.specify)Image: Specify (pl.specify)Image: Specify (pl.specify)Others (pl.specify)Image: Specify (pl.specify (pl.specify)Image: Specify (pl.specify (pl.specify (pl.specify (pl.specify (pl.specify (pl.specify (pl.specify (pl.sp	Integrated Nutrient Management										
HorticultureImage: Constraint of the second sec	Production of organic inputs										
a) Vegetable CropsabbbbbProduction of low value and high volume cropaaaaaaaOff-season vegetablesaaaaaaaaaaNursery raisingaa <td>Others (pl.specify)</td> <td></td>	Others (pl.specify)										
Production of low value and high volume cropImage: state of the sta	Horticulture										
cropII<	a) Vegetable Crops										
Off-season vegetablesImage: season vegetablesImage: season vegetablesNursery raisingImage: season vegetablesImage: season vegetablesExport potential vegetablesImage: season vegetablesImage: season vegetablesGrading and standardizationImage: season vegetablesImage: season vegetablesOthers (pl.specify)Image: season vegetablesImage: season vegetablesOthers (pl.specify)Image: season vegetablesImage: season vegetablesb) FruitsImage: season vegetablesImage: season vegetablesCuttivation of PruitImage: season vegetablesImage: season vegetablesManagement of OrchardsImage: season vegetablesImage: season vegetablesRejuvenation of old orchardsImage: season vegetablesImage: season vegetablesMicro irrigation systems of orchardsImage: season vegetablesImage: season vegetablesPlant propagation techniquesImage: season vegetablesImage: season vegetablesOthers (pl.specify)Image: season vegetablesImage: season vegetablesCutors (pl.specify)Image: season vegetablesImage: season vegetablesOthers (pl.specify)Im											
Exotic vegetablesImage: segmetablesImage:	Off-season vegetables										
Export potential vegetablesImage: constraint of the sector of	Nursery raising										
Grading and standardizationImage: standardizationImage: standardizationImage: standardizationProtective cultivationImage: standardizationImage: standardizationImage: standardizationImage: standardizationOthers (pl.specify)Image: standardizationImage: standardizationImage: standardizationImage: standardizationb) FruitsImage: standardizationImage: standardizationImage: standardizationImage: standardizationImage: standardizationb) FruitsImage: standardizationImage: standardizationImage: standardizationImage: standardizationImage: standardizationLayout and Management of OrchardsImage: standardizationImage: standardizationImage: standardizationImage: standardizationImage: standardizationLayout and Management of OrchardsImage: standardizationImage: standardizationImage: standardizationImage: standardizationImage: standardizationCultivation of FruitImage: standardizationImage: standardizationImage: standardizationImage: standardizationImage: standardizationManagement of young plants/orchardsImage: standardizationImage: standardizationImage: standardizationImage: standardizationImage: standardizationManagement of old orchardsImage: standardizationImage: standardizationImage: standardizationImage: standardizationImage: standardizationManagement of old orchardsImage: standardizationImage: standardizationImage: standardizationImage: standardizationImage: standardization	Exotic vegetables										
Protective cultivationImage: Constraint of the systems of orchardsImage: Constraint of the systems of or chardsImage: Constraint of the systems of orchardsImage: Constraint of the systems of or chardsImage: Constraint of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the systems of the	Export potential vegetables										
Others (pl.specify)Image: constraint of the specify of t	Grading and standardization										
b) FruitsImage: Second Sec	Protective cultivation										
Training and PruningImage: Constraint of OrchardsImage: Constraint of Orch	Others (pl.specify)										
Layout and Management of OrchardsImagement of OrchardsImagement of OrchardsCultivation of FruitImagement of young plants/orchardsImagement of young plants/orchardsImagement of OrchardsManagement of old orchardsImagement of Old orchardsImagement of Old orchardsImagement of Old orchardsExport potential fruitsImagement of OrchardsImagement of Old orchardsImagement of Old orchardsMicro irrigation systems of orchardsImagement of Old orchardsImagement of Old orchardsImagement of Old orchardsPlant propagation techniquesImagement of Old orchardsImagement of Old orchardsImagement of Old orchardsOthers (pl.specify)Imagement of Old orchardsImagement of Old orchardsImagement of Old orchardsC) Ornamental PlantsImagement of Old orchardsImagement of Old orchardsImagement of Old orchards	b) Fruits										
Cultivation of FruitImage and the second	Training and Pruning										
Cultivation of FruitImage and the second	Layout and Management of Orchards										
Rejuvenation of old orchards Image: Constraint of the second											
Rejuvenation of old orchards Image: Constraint of the second											
Export potential fruitsImage: Constraint of the systems of orchardsImage: Constraint of the systems of orchardsImage: Constraint of the systems of orchardsMicro irrigation systems of orchardsImage: Constraint of the systems of orchardsImage: Constraint of the systems of orchardsImage: Constraint of the systems of orchardsImage: Constraint of the systems of orchardsPlant propagation techniquesImage: Constraint of the systems of orchardsImage: Constraint of the systems of orchardsImage: Constraint of the systems of the s	• • • •										
Micro irrigation systems of orchards Image: Constraint of the systems of orchards Plant propagation techniques Image: Constraint of the systems o											
Plant propagation techniques Image: Constraint of the second se	• •										
Others (pl.specify) Image: Constraint of the second seco											
c) Ornamental Plants											
Nursery Management	Nursery Management										
Management of potted plants											

Export potential of ornamental plants										
Propagation techniques of Ornamental Plants										
Others (pl.specify)										
d) Plantation crops										
Production and Management technology										
Processing and value addition										
Others (pl.specify)										
e) Tuber crops										
Production and Management technology										
Processing and value addition										
Others (pl.specify)										
f) Spices										
Production and Management technology										
Processing and value addition										
Others (pl.specify)										
g) Medicinal and Aromatic Plants										
Nursery management										
Production and management technology										
Post harvest technology and value addition										
Others (pl.specify)										
Soil Health and Fertility Management										
Soil fertility management	1	19	-	19 4		2	62	3	2	25
Integrated water management										
Integrated nutrient management										
Production and use of organic inputs										
Management of Problematic soils										
Micro nutrient deficiency in crops	1	21	-	21 4		-	4 2	5	-	25
Nutrient use efficiency										
Balanced use of fertilizers	1	16	6	22 -		-	- 1	6	6	22
Soil and water testing	2	25 32		57	-	2	2	25 3	4	59
Others (pl.specify)										
Livestock Production and Management										
Dairy Management										
Poultry Management	1	14	5	19 2		4	6 1	6	9	25
Piggery Management										
Rabbit Management										
Animal Nutrition Management										
Animal Disease Management	1	11	2	13 8		-	8 1	9	2	21
Feed and Fodder technology		1								
Production of quality animal products										
Others (pl.specify)		1								
Home Science/Women empowerment										

Household food security by kitchen gardening and nutrition gardening Design and development of low/minimum					
Design and development of low/minimum					
cost diet					
Designing and development for high nutrient efficiency diet					
Minimization of nutrient loss in processing					
Processing and cooking					
Gender mainstreaming through SHGs					
Storage loss minimization techniques					
Value addition					
Women empowerment					
Location specific drudgery production					
Rural Crafts					
Women and child care					
Others (pl.specify)					
Agril. Engineering					
Farm machinery and its maintenance					
Installation and maintenance of micro					
irrigation systems					
Use of Plastics in farming practices					
Production of small tools and implements					
Repair and maintenance of farm machinery and implements					
Small scale processing and value addition					
Post Harvest Technology					
Others (pl.specify)					
Plant Protection					
Integrated Pest Management					
Integrated Disease Management					
Bio-control of pests and diseases					
Production of bio control agents and bio pesticides					
Others (pl.specify)					
Fisheries					
Integrated fish farming					
Carp breeding and hatchery management					
Carp fry and fingerling rearing					
Composite fish culture					
Hatchery management and culture of freshwater prawn					
Breeding and culture of ornamental fishes					
Portable plastic carp hatchery					
Pen culture of fish and prawn			1		
Shrimp farming			1		
Edible oyster farming					
Pearl culture					

Fish processing and value addition										
Others (pl.specify)										
Production of Inputs at site										
Seed Production										
Planting material production										
Bio-agents production										
Bio-pesticides production										
Bio-fertilizer production										
Vermi-compost production										
Organic manures production										
Production of fry and fingerlings										
Production of Bee-colonies and wax sheets	1	14	5	19 2		4	61	6	9	25
Small tools and implements										
Production of livestock feed and fodder										
Production of Fish feed										
Mushroom production	1	11	2	13 8		-	81	9	2	21
Apiculture										
Others (pl.specify)										
Capacity Building and Group Dynamics										
Leadership development										
Group dynamics										
Formation and Management of SHGs										
Mobilization of social capital										
Entrepreneurial development of farmers/youths Others (pl.specify)										
Agro-forestry										
Production technologies										
Production technologies Nursery management										
Integrated Farming Systems										
Others (Pl. specify)										
TOTAL	29	459 2	84	743	67	66	133	526 3	5 O	876

Farmers' Training including sponsored training programmes (Off campus)

Area of training	No. of				No.	of Partici	pants	1	0 17 1	
	Courses	Male	General Female	Total	Male	SC/ST Female	Total	Male	Grand Tota Female	al Total
Crop Production		Marc	1 cmaic	Total	Marc	Ternate	Total	Marc	1 ciliaic	Total
Weed Management	2	29	20	49 3		6	93	2	26	58
Resource Conservation Technologies										
Cropping Systems										
Crop Diversification										
Integrated Farming										
Micro Irrigation/Irrigation										
Seed production										
Nursery management										
Integrated Crop Management	8	120 1	64	284	30	36	66	150 20	0	350
Soil and Water Conservation										
Integrated Nutrient Management	1	31	4 35		17	3 20		48	7	55
Production of organic inputs										
Others (pl.specify)										
Horticulture										
a) Vegetable Crops										
Production of low value and high volume crop										
Off-season vegetables										
Nursery raising										
Exotic vegetables										
Export potential vegetables	13	65 2	60	325	-	-	-	65 26	0	325
Grading and standardization										
Protective cultivation										
Others (pl.specify)										
b) Fruits										
Training and Pruning										
Layout and Management of Orchards										
Cultivation of Fruit										
Management of young plants/orchards										
Rejuvenation of old orchards										
Export potential fruits										
Micro irrigation systems of orchards										
Plant propagation techniques										
Others (pl.specify)										
c) Ornamental Plants										
Nursery Management										
Management of potted plants										
Export potential of ornamental plants										

Propagation techniques of Ornamental										
Plants Others (pl.specify)										
d) Plantation crops										
Production and Management technology										
Processing and value addition										
•										
Others (pl.specify)										
e) Tuber crops										
Production and Management technology										
Processing and value addition										
Others (pl.specify)										
f) Spices										
Production and Management technology										
Processing and value addition										
Others (pl.specify)										
g) Medicinal and Aromatic Plants										
Nursery management										
Production and management technology										
Post harvest technology and value addition										
Others (pl.specify)										
Soil Health and Fertility Management										
Soil fertility management										
Integrated water management										
Integrated nutrient management										
Production and use of organic inputs										
Management of Problematic soils										
Micro nutrient deficiency in crops										
Nutrient use efficiency										
Balanced use of fertilizers										
Soil and water testing	13	65 2	60	325	-	-	-	65 26	0	325
Others (pl.specify)										
Livestock Production and Management										
Dairy Management										
Poultry Management										
Piggery Management										
Rabbit Management										
Animal Nutrition Management										
Animal Disease Management	1									
Feed and Fodder technology	4	64 9	6	160	2	_	2	66 96		162
Production of quality animal products	· ·		v				-			1.72
Others (pl.specify)										
Home Science/Women empowerment		+								
Household food security by kitchen										

gardening and nutrition gardening									
Design and development of low/minimum cost diet									
Designing and development for high nutrient efficiency diet									
Minimization of nutrient loss in processing									
Processing and cooking									
Gender mainstreaming through SHGs									
Storage loss minimization techniques									
Value addition	2	11 23	34	6	5	11	17 2	8	45
Women empowerment			•••	-	-				
Location specific drudgery production									
Rural Crafts									
Women and child care									
Others (pl.specify)									
Agril. Engineering									
Farm machinery and its maintenance									
Installation and maintenance of micro irrigation systems									
Use of Plastics in farming practices									
Production of small tools and implements									
Repair and maintenance of farm machinery and implements									
Small scale processing and value addition									
Post Harvest Technology									
Others (pl.specify)									
Plant Protection									
Integrated Pest Management									
Integrated Disease Management									
Bio-control of pests and diseases									
Production of bio control agents and bio pesticides									
Others (pl.specify)									
Fisheries									
Integrated fish farming									
Carp breeding and hatchery management									
Carp fry and fingerling rearing									
Composite fish culture									
Hatchery management and culture of freshwater prawn									
Breeding and culture of ornamental fishes									
Portable plastic carp hatchery									
Pen culture of fish and prawn									
Shrimp farming									
Edible oyster farming									
Pearl culture									

Fish processing and value addition										
Others (pl.specify)										
Production of Inputs at site										
Seed Production										1
Planting material production										
Bio-agents production										
Bio-pesticides production										1
Bio-fertilizer production										
Vermi-compost production	1	28 24		52	5	7	12	33 3	1	64
Organic manures production	1	22	13	35 -		-	- 2	2	13	35
Production of fry and fingerlings										
Production of Bee-colonies and wax sheets										
Small tools and implements										1
Production of livestock feed and fodder										
Production of Fish feed										
Mushroom production	3	39	50	89 1		-	14	0	50	90
Apiculture										
Others (pl.specify)										
Capacity Building and Group Dynamics										
Leadership development										
Group dynamics										1
Formation and Management of SHGs										
Mobilization of social capital										
Entrepreneurial development of farmers/youths										
Others (pl.specify)										
Agro-forestry										
Production technologies										
Nursery management										
Integrated Farming Systems										
Others (PI. specify)										
TOTAL	36	415	676	1091 6	4	59	123 4	79	735	1214

Training for Rural Youths including sponsored training programmes (on campus) : Nil

		No			No. of	No. of Participants						
Area of training	No. of		General			SC/ST			Grand Tot			
,	Courses	Male	Femal	Total	Male	Femal	Total	Male	Femal	Total		
Nursery Management of Horticulture crops Training and pruning of orchards			e			e			e			
Protected cultivation of vegetable												
crops Commercial fruit production												
Integrated farming												
Seed production												
Production of organic inputs												
Planting material production												
Vermi-culture												
Mushroom Production												
Bee-keeping												
Sericulture												
Repair and maintenance of farm machinery and implements												
Value addition												
Small scale processing												
Post Harvest Technology												
Tailoring and Stitching												
Rural Crafts												
Production of quality animal products Dairying												
Sheep and goat rearing												
Quail farming												
Piggery												
Rabbit farming												
Poultry production												
Ornamental fisheries												
Composite fish culture												
Freshwater prawn culture												
Shrimp farming												
Pearl culture												
Cold water fisheries												
Fish harvest and processing technology												
Fry and fingerling rearing												
Any other (pl.specify)												
TOTAL												

Training for Rural Youths including sponsored training programmes (off campus) : Nil

		No. of P					Participants					
Area of training	No. of		General			SC/ST			Grand Tot	al		
	Courses	Male	Femal e	Total	Male	Femal e	Total	Male	Femal e	Total		
Nursery Management of Horticulture crops						C			C			
Training and pruning of orchards												
Protected cultivation of vegetable												
crops												
Commercial fruit production												
Integrated farming												
Seed production												
Production of organic inputs												
Planting material production												
Vermi-culture												
Mushroom Production												
Bee-keeping												
Sericulture												
Repair and maintenance of farm machinery and implements												
Value addition												
Small scale processing												
Post Harvest Technology												
Tailoring and Stitching												
Rural Crafts												
Production of quality animal products												
Dairying												
Sheep and goat rearing												
Quail farming												
Piggery												
Rabbit farming												
Poultry production												
Ornamental fisheries												
Composite fish culture												
Freshwater prawn culture												
Shrimp farming			1					1		1		
Pearl culture					1			1				
Cold water fisheries												
Fish harvest and processing technology												
Fry and fingerling rearing					1			1				
Any other (pl.specify)												
TOTAL								1				

Training programmes for Extension Personnel including sponsored training programmes (on campus)

r		51 515 (1)										
	No. of				No. of	No. of Participants						
Area of training	Cours		General			SC/ST		(Grand Tot	al		
	es	Male	Femal e	Total	Male	Femal e	Total	Male	Femal e	Total		
Productivity enhancement in field crops	4 6	8	6	74	12	18	30	80	24	104		
Integrated Pest Management												
Integrated Nutrient management												
Rejuvenation of old orchards												
Protected cultivation technology												
Production and use of organic inputs												
Care and maintenance of farm machinery and implements												
Gender mainstreaming through SHGs	22	1	16	37	-			21	16	37		
Formation and Management of SHGs												
Women and Child care												
Low cost and nutrient efficient diet designing												
Group Dynamics and farmers organization												
Information networking among farmers												
Capacity building for ICT application												
Management in farm animals												
Livestock feed and fodder production												
Household food security												
Any other (pl.specify) Seed production	2 3	8	15	53	3	4	7	41	19	60		
Total	8 1	27	37	164	15	22	37	142	59	201		

Training programmes for Extension Personnel including sponsored training programmes (off campus)

	No. of				No. of	Participa	nts			
Area of training	Cours		General			SC/ST		(Grand Tota	al
	es	Male	Femal e	Total	Male	Femal e	Total	Male	Femal e	Total
Productivity enhancement in										
field crops										
Integrated Pest Management										
Integrated Nutrient										
management										
Rejuvenation of old orchards										
Protected cultivation										
technology										
Production and use of organic										
inputs										
Care and maintenance of farm										
machinery and implements										
Gender mainstreaming										
through SHGs										
Formation and Management of										
SHGs										
Women and Child care										
Low cost and nutrient efficient										
diet designing										
Group Dynamics and farmers										
organization										
Information networking among farmers										
Capacity building for ICT										
application										
Management in farm animals										
Livestock feed and fodder										
production										
Household food security										
Any other (pl.specify)										
Total										

Sponsored training programmes

		No. of				No.	of Partici	oants			
S.No	Area of training	Course		General			SC/ST		(Grand Tota	al
	Area or training	S	Mal	Femal	Tota	Mal	Femal	Tota	Mal	Femal	Tota
			e	е	1	e	e	1	e	e	1
1	Crop production and management		-	-					-	-	
1.a.	Increasing production and productivity of	7.40	•		004	•	10	0.5	407		0.40
	crops	7 12	2	99	221	6	19	25	127	118	246
1.b.	Commercial production of vegetables										
2	Production and value addition										
2.a.	Fruit Plants										
2.b.	Ornamental plants										
2.c.	Spices crops										
3.	Soil health and fertility management										
4	Production of Inputs at site	1	22 13	}	35	-	-	-	22 13	}	35
5	Methods of protective cultivation										
6	Others (pl.specify)										
7	Post harvest technology and value										
	addition										
7.a.	Processing and value addition										
7.b. Ot											
8	Farm machinery										
8.a.	Farm machinery, tools and implements										
8.b. Ot											
9.	Livestock and fisheries										
10	Livestock production and management										
10.a.	Animal Nutrition Management										
10.b.	Animal Disease Management										
10.c F	isheries Nutrition										
10.d F	isheries Management										
10.e. C											
11.	Home Science										
11.a. H	ous ehold nutritional security										
11.b.	Economic empowerment of women										
11.c.	Drudgery reduction of women										
11.d. C											
12	Agricultural Extension										
12.a.	Capacity Building and Group Dynamics										
	t hers (pl.specify)	0	04.40		07				04.40		07
	Gender Sensitization Module Programme	2	21 16)	37	-	-	-	21 16)	37
	Total	10	165 1	28	293	6	19	25	170 1	47	318

Details of vocational training programmes carried out for rural youth

		No. of				No.	of Particip	oants			
S.No	Area of training	Course		General			SC/ST		(Grand Tota	al
•		S	Mal e	Femal e	Tota I	Mal e	Femal e	Tota I	Mal e	Femal e	Tota I
1	Crop production and management										
1.a. Co											
1.b.	Commercial fruit production										
1.c. Co	mm ercial vegetable production										
1.d.	Integrated crop management	2	27	8 35		4	71	1	31	15	46
1.e. Or											
1.f. Otl											
2	Post harvest technology and value addition										
2.a. Va	l ue addition										
2.b. Ot											
3.	Livestock and fisheries										
3.a. Da											
3.b.	Composite fish culture										
3.c.	Sheep and goat rearing										
3.d. Pi											
3.e. Po											
3.f. Otl											
4.	Income generation activities										
4.a. Ve		1	23	-	23	-	2	2	23	2	25
4.b.	Production of bio-agents, bio-pesticides, bio-fertilizers etc.		-								
4.c.	Repair and maintenance of farm machinery and implements										
4.d. Rı											
4.e. Se											
4.f. Se											
4.g. M	shroom cultivation										
4.h. Nu	rs ery, grafting etc.										
4.i.	Tailoring, stitching, embroidery, dying etc.										
4.j.	Agril. para-workers, para-vet training										
4.k. Ot		1 20		4	25		1	1	20	5	25
	Bee Keeping	1 20		4	20	-	I	I	20	Э	20
5	Agricultural Extension										
5.a. Ca	p acity building and group dynamics										
5.b. Ot											
	Grand Total	4	70	12 83		4	10 1	4	74	22	96

V. Extension Programmes

Activities	No. of programmes	No. of farmers	No. of Extension Personnel	TOTAL
Advisory Services	124 1	040		1040
Diagnostic visits	8	38		38
Field Day	9	411		411
Group discussions				
Kisan Ghosthi				
Film Show	2	96		96
Self -help groups	5	125		125
Kisan Mela				
Exhibition	5	2100	21 21	21
Scientists' visit to farmers field	43	43		43
Plant/animal health camps	2	47		47
Farm Science Club				
Ex-trainees Sammelan				
Farmers' seminar/workshop				
Method Demonstrations	10	265		265
Celebration of important days				
Special day celebration				
Exposure visits	6	300		300
Others (pl.specify)				
Total	214	4465	21	4486

Details of other extension programmes

Particulars	Number
Electronic Media	
Extension Literature	20
News Letter	
News paper coverage	15
Technical Articles	20
Technical Bulletins	
Technical Reports	7
Radio Talks	10
TV Talks	
Animal health camps (Number of animals treated)	1050
Others (pl.specify)	
Total	1102

VI. PRODUCTION OF SEED/PLANTING MATERIAL

Production of seeds by the KVKs

Crop category	Name of the crop	Name of the variety (if hybrid pl. specify)	Quantity of seed (q)	Value (Rs)	Number of farmers
Cereals					
Oilseeds					
Pulses					
Commercial crops					
Vegetables					
Flower crops					
Spices					
Fodder crop seeds					
Fiber crops					
Forest Species					
Others					
Total					

Production of planting materials by the KVKs

Crop category	Name of the crop	Name of the variety (if hybrid pl. specify)	Number	Value (Rs.)	Number of farmers
Commercial					
Vegetable seedlings					
Fruits					
Ornamental plants					
Medicinal and Aromatic	Amla Ka	nchan, NA7	2300 57	500	1
Plantation	Wood apple		654	3274 1	
Spices					
Tuber					
Fodder crop saplings					
Forest Species	Pungam		4 24		1
Others					
Total					

Production of Bio-Products

	Name of the bio-product	Quantity		
Bio Products		Kg	Value (Rs.)	No. of Farmers
Bio Fertilizers				
Bio-pesticide				
Bio-fungicide				
Bio Agents				
Others	Portable vermi unit	20 Nos	34000	20
Total				

Production of livestock and related enterprise materials

Particulars of Live stock	Name of the breed	Number	Value (Rs.)	No. of Farmers
Dairy animals				
Cows				
Buffaloes				
Calves				
Others (PI. specify)				
Poultry				
Broilers				
Layers				
Duals (broiler and layer)				
Japanese Quail				
Turkey				
Emu				
Ducks				
Others (PI. specify)				
Piggery				
Piglet				
Others (Pl.specify)				
Fisheries				
Fingerlings				
BI	ack moli	28	210	1
Ora	nge moli	26	195	1
Gol	d	10	100	1
Red	moli	28	70	1
S	hark	20	200	1
W	hite	20	150	1
	Total	132	925	7
Others (PI. specify)				
Total				

VII. DETAILS OF SOIL, WATER AND PLANT ANALYSIS 2010-11

Samples	No. of Samples	No. of Farmers	No. of Villages	Amount realized (Rs.)
Soil	235	176	25	5875
Water	215	215	23	2150
Plant				
Manure				
Others (pl.specify)				
Total	450 39	1	48	8025

VIII. SCIENTIFIC ADVISORY COMMITTEE

Number of SACs conducted	
One	

Number of issues of newsletter published

IX. NEWSLETTER

157

NEWSLETTE

Χ.

Number of research paper published : Nil

XI. DETAILS ON RAIN WATER HARVESTING STRUCTURE AND MICRO-IRRIGATION SYSTEM

Nil - Yet to be sanctioned

Activities conducted					
No. of Training programmes	No. of Demonstration s	No. of plant materials produced	Visit by farmers	Visit by officials	
			(No.)	(No.)	

-----XXXXXXX------